The highly stylized art of Japanese Kazumasa Nagai is featured on this month's cover. Linear computerlike patterns superimposed over realistic landscapes are indicative of Nagai's unmistakable style and exemplify Japan's current trend toward surrealism.

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST WORD</td>
<td>Opinion</td>
</tr>
<tr>
<td>OMNIBUS</td>
<td>Contributors</td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
<td>Correspondence</td>
</tr>
<tr>
<td>FORUM</td>
<td>Dialogue</td>
</tr>
<tr>
<td>EARTH</td>
<td>Environment</td>
</tr>
<tr>
<td>LIFE</td>
<td>Biomedicine</td>
</tr>
<tr>
<td>SPACE</td>
<td>Comment</td>
</tr>
<tr>
<td>MIND</td>
<td>Behavior</td>
</tr>
<tr>
<td>CONTINUUM</td>
<td>Data Bank</td>
</tr>
<tr>
<td>FUSION ODYSSEY</td>
<td>Article</td>
</tr>
<tr>
<td>THE BUSINESS OF FUSION</td>
<td>Article</td>
</tr>
<tr>
<td>FUSION POLITICS</td>
<td>Article</td>
</tr>
<tr>
<td>ROBERT BUSSARD</td>
<td>Interview</td>
</tr>
<tr>
<td>DIVINE ALCHEMIST</td>
<td>Pictorial</td>
</tr>
<tr>
<td>ODD MAN OUT</td>
<td>Article</td>
</tr>
<tr>
<td>BODY BALL</td>
<td>Fiction</td>
</tr>
<tr>
<td>APERTURES</td>
<td>Pictorial</td>
</tr>
<tr>
<td>PEOPLE</td>
<td>Names and Faces</td>
</tr>
<tr>
<td>A CAGE FOR DEATH</td>
<td>Fiction</td>
</tr>
<tr>
<td>FILM</td>
<td>The Arts</td>
</tr>
<tr>
<td>BOOKS</td>
<td>The Arts</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>STARS</td>
<td>Astronomy</td>
</tr>
<tr>
<td>PHOTO CREDITS</td>
<td></td>
</tr>
<tr>
<td>PHOTO CONTEST</td>
<td>Competition</td>
</tr>
<tr>
<td>PERSIAN BRONZE</td>
<td>Phenomena</td>
</tr>
<tr>
<td>GAMES</td>
<td>Diversions</td>
</tr>
<tr>
<td>LAST WORD</td>
<td>Opinion</td>
</tr>
</tbody>
</table>

OMNI 1980 (ISSN 0146-5711) U.S. Volume 3 Number 4 Copyright © 1980 by Omni Publications International Ltd. All rights reserved. Published monthly in the United States and in Canada by Omni Publications International Ltd, 103 Third Avenue, New York, N.Y. 10002. Tel: (212) 563-3383. Printed in the U.S.A. by Meridian Printing Corp and distributed in the U.S.A., Canada, U.S. Territories, possessions and the world (except the U.K.) by Curtis Circulation Company, 21 Henderson Drive, West Caldwell, N.J. 07006. Distributed in the U.K. by SM Distributors Ltd. 18-16 Trinity, Gardens, London SW9 9JL England. Entire contents copyrighted. No portion may be reproduced in whole or in part without written permission from the publisher. Any similarity between photographs or persons reproduced in the fiction or art, fiction and real places or persons living or dead in art, fiction is coincidental. Subscriptions: U.S.: APO—$18.00 per year. Canadian and elsewhere—$24.00 per year. Single copies $3.00 in U.S. APO $3.25 in Canada. Address changes to Omni Magazine, F.O. Box 909, Farmington, N.Y. 11735. Postmasters: Send form 3579 to Farmington address. Tel (914) 691-0694. Controlled circulation postage paid at Des Moines, Iowa. Publisher declines all responsibility for return unsolicited editorial matter and all graphic portions in this issue. The contents of this magazine and the sole property of Omni Publications International Ltd. Letters to Omni editors become the property of the magazine and are assumed intended for publication in whole or in part, and may therefore be used for such purposes.
FIRST WORD

By Robert Anderson

Media emotionally reinforce the simple answer while suppressing the insight necessary for a complex technological society.

One of life’s ironies is that as our modes of communication become more sophisticated and far-reaching, the messages they carry become more simplistic and restricted.

Be it television expose, radio news show, or printed investigative report, each aims at a wide audience under the restrictions of air time or print space. Each tries to simplify its messages in order to hold the interest of an audience whose education and experience are as broad as the human spectrum. As audience size increases, message content reflects little intellectual analysis, relying instead on emotional appeal. The result is that the media, reaching the greatest number of Americans, carry messages often designed to reinforce emotionally the simple answers while suppressing the insight necessary for decision making in a complex technological society.

Two words often maligned in this phenomenon of reduction to simplicity in communications are future and profits. Because each term encompasses many possible causes and conditions, the use of emotional appeal devoid of any intellectual insight has a misleading, and often destructive, effect. The effect is clear, at best, a composite misrepresentation as in “the promise of the future or in the worst case, an emotional bias such as excess profits.”

An even greater injustice results from the spread of simplistic information is that the media, unable to deal adequately with the terms future and profits, cannot deal with the relationship between the two. Before we begin to understand this relationship, we need to consider current concepts of future and profits.

Most of us use two methods to view the future through historical extrapolation or through fictional presentations.

Historically we can detect patterns of growth and development in science and technology. We see a colony of pioneers develop into a country of inventors then into our world community of scientists and engineers. We can predict where we expect to be in the year 2000 by using information such as energy availability and the opinions of experts concerning the avoidance of nuclear war. Essentially this is the “as it has been, so shall it be” theory of the future. We assume conditions and we assume progress. Unfortunately this method concentrates only on historical events and not on one of the main driving forces leading to them. This method cannot predict the creative leaps, be they spontaneous or intuitive that could fundamentally change our future.

Fiction, our second method of viewing the future, invents these creative leaps because they are necessary to enrich the narrative. But fiction, too, has its drawbacks in predicting the future. There are thousands of possible future worlds but there will be only one factual world. Fiction never really shows us how to get from here to there. And fiction often raises false expectations. For example, how can we appreciate the problems inherent in building the space shuttle after having mentally flown in so many fictional spaceships?

We cannot rationalize the future by using history, nor can we fantasize it. There will be only one future. And we won’t predict it; we’ll create it.

We create the future by buying it, and we’ll get what we’re willing to pay for. We buy the future with our time, our brainpower, and the amount of money we spend on it today. If we cut back the amount of time, intellect, and money that we expend on national defense, the space program, or research and development, we cut back the future. If we want progress in the future, we have to pay for it now. The less committed we are to creating the future, the less future we create.

But conversely, the more committed we are to creating the future, the better future we can create.

Which brings us to our second word: profits.

Those who think of profits as bags of money sitting in corporate vaults and waiting to be divided up by robber barons are suffering from a severe case of mass-mediaitis. For those who think of profits as what’s left over after wages, bills, operating costs, and taxes are paid, perhaps there’s hope. Those who see clearly the relationship between what’s left over and what we can spend on the future are following the right track.

Profit—in the term of time, brainpower, and money—is a tool, the very one we use to create the future. Research-and-development programs, new plants and equipment, new products and services, and new jobs all come from profits.

Once you see this relationship between profits and future, you begin to understand that there are no “excess profits,” because profits are converted into tools to create the future.

Earlier I mentioned that when we view the future through historical extrapolation we ignore one of the main forces that drove our historical progress. One of these forces is our need to improve ourselves by profiting from experience from mistakes and from investment. The question is: Do we want to continue to improve our science, our technology, our arts, our way of life?

Without profits, you might as well tear up your ticket to Star Wars III. Buy your Omni magazine subscription form, and forget about next year’s novel by Asimov, Hiven, or Sturgeon. These won’t exist without the promise of profits.

But that’s probably just as well, because without profits as a tool to create the future, it’s only frustration to dream about it.

Robert Anderson is chairman of the board and chief executive officer of Rockwell International Corporation headquartered in Pittsburgh.
There's no question that if fusion works, it will solve the world's energy problems once and for all. The real question is, Will it work? We understand well enough the physics of a fusion reaction but time and money must assume generous dimensions if fusion is ever to demonstrate its potential as an infinite source of safe energy. Mike McCormack agrees. Before he was swept from office by the conservative tide last November 4, Congressman McCormack somehow persuaded his colleagues to vote for an energy package few of them even understood. Scientists and engineers for years have attempted to harness the power of the stars but only recently have they demonstrated the possibility of actually building a fusion reactor. The former representative from Washington State guided a $20 billion program through Congress that guarantees a fusion reactor within the next 20 years.

It's the most important energy development since the controlled use of fire. McCormack told science writer Dan Greenberg in Fusion Politics (page 52) but politics isn't the whole story. The business and the science of fusion form other elements in a composite portending the eventual reality of free energy. This month's Omni explores the implications of an alternative so profound we'd better not let it pass us by.

"Small is better," says Robert W. Bussard, whose independent company, Inesco, wants to build cheap, modular "midget" fusion reactors. These machines could be used up and thrown away like light bulbs. How does Bussard's midget miracle technology stack up to the big fusion establishment? K.C. Cole provides the provocative answers in this month's Interview on page 56. Cole is the author of What Only a Mother Can Tell You About Having a Baby (Doubleday/Anchor) and of several guidebooks on scientific phenomena. A contributor to, and former editor of Newday and Saturday Review, Cole has also written for the New York Times and Glamour.

Private industry's development of commercial fusion has been but a drop in the bucket thus far yet an increasing number of major firms are plunging in as the program swings from pure physics to engineering. The end result: A worldwide fusion economy within 50 years. Former Newsweek writer R. Bruce McColm profiles the technicians who make it happen in The Business of Fusion (page 46).

Mike Edelhart's Fusion Odyssey (page 38) depicts a world where limitless energy has become a way of life. Cities, industry, even spacecraft, are powered by fusion reactors. An associate editor of Omni, Edelhart has written several books and has had articles published in New Times TV Guide, the Washington Post, Writer's Digest, and elsewhere. He is also a columnist for TWA's Ambassador magazine.

This month's fiction includes Ian Watson's 'A Cage for Death' (page 94) A 1963 graduate of Oxford University Watson has lectured at universities in Tanzania and Japan. His first novel, The Embedding, won the French Prix Apollo; his second, The Jonah Kit, received top honors from the British Science Fiction Association. A novel based on the story 'A Cage for Death' is due in the fall of 1981 to be entitled Deathhunter. Also featured is John Keefauver (Body Ball on page 72). Keefauver has had many pieces published in such periodicals as National Review and Omni. His work can also be found in several suspense anthologies including Random House's Hitchcock collections.

The visionary genius of fantastic realist Ernst Fuchs is displayed in a gallery of paintings entitled 'Divine Alchemist.' An expert on Fuchs's hypotonic images and subliminal style, see page 62. Princeton's controversial professor Julian Jaynes is profiled by science editor Philip Hills in Cold Man Out (page 68). Hills, a writer for the Washington Post, has profiled many big names including Walter Cronkite and David Brinkley.

Omni was named Best Magazine of 1980 and Editor in Chief and Publisher Bob Guccione was presented a Golden Scroll Award of Merit for Outstanding Achievement by the Academy of Science Fiction, Fantasy and Horror Films. And our European editor Bernard Dixon, was recently honored with the Glaxo Fellowship Award for his column Talking Science, in World Medicine magazine.
LETTERS

COMMUNICATIONS

Robot Revolution
A long-time advocate of full employment, I read with great interest James S. Albus's intriguing article, 'To Pay for the Future' [October 1980]. The potential of robotics and information-communications technologies to free humanity from drudgery and poverty is wonderful indeed.

The problem Mr. Albus addresses is crucial to the realization of this potential. Somehow we must change the way we distribute wealth so that machine-generated profits can be spread around in an equitable manner.

I hold jobs only because of economic necessity and see nothing noble about working for money. Moreover, consider the waste, pollution, and superfluousity of lives dedicated to the preservation of our present consumer society. If we got down to creating truly durable goods and distributed much of our hardware into software, we might find that much of our present industrial activity exists only to keep people working at dull and dangerous jobs.

Perhaps the answer lies in beginning to distribute wealth to the tinkers, inventors, thinkers, artists, poets, and writers as robotics displaces our citizenry from factories and offices. Wouldn't it be nice if we could all take our doctor's advice to slow down, get outdoors, tend a garden, get more exercise and sleep, and spend our days involved in creative activities?

Let's hear more about this topic.

Phil Armstrong
Great Lakes Energy Systems
Bayne City, Mich.

If the robots are coming, then we should heed the Albus scenario as a warning of the tragedy the robotic revolution can bring. Obviously, Albus adheres to an old doctrine that wherever technology pushes them, man and woman will love it.

Also Radish!

Some people would prosper in such a world, true. But most would founder in a civilization of abundance without pecuniary incentive or achievement. Sadly the intellectual pursuits that Mr. Albus proposes as replacements for effort in the workplace simply don't interest many people. Not everyone can be satisfied pondering the heady problems of overpopulation and space colonization. To be fair, of course, Albus does offer the displaced workers the option of becoming programmers and factory workers for the very robots that displaced them. But such work seems little improvement over what Albus sees as drudgery in 1980.

Perhaps most appealingly Albus fuels our insatiable materialism. He points to unlimited cheap goods as central to the robot revolution. Everything will be so inexpensive he predicts that nothing will be worth repairing, or keeping, or using more than a few times. Disposing of the family car when the ashtrays fill will be commonplace.

The robots may be coming. If they are, it's because people are bringing them.

Let's fashion technology in the image of man and woman. Not vice versa.

Rod Auras
Gaithersburg, Md.

Still a Burning Issue
Your anniversary issue [October 1980] carried a letter concerning the old dilemma of the relative temperatures of Heaven and Hell! It is time that this issue be finally resolved.

In a recent issue of *Journal of Ine producible Results*, a contributor finally resolved the flaw in the classic dispute. As any high-school chemistry student can tell you, boiling point of any substance varies with the ambient pressure. Relying on estimates of the number of the damned and on the size of Hell (based on theological calculations) the pressure in Hell may be calculated to be on the order of 10^18 atmospheres. All will agree I believe that sulfur will boil at a considerably higher temperature under these conditions.

This should finally put an end to the Heaven/Hell temperature debate.

Arthur S. Harrow
Tempe, Ariz.
We can't wait around forever or even for very long before this planet's natural resources are exhausted. We must start immediately to explore the beyond. In depth, before we are forced to import materials that can be ours.

The next election for the House of Representatives comes in two years. So let's get involved and help get the right people into office, people who recognize where our future lies.

Mark Vitali
San Diego, Calif.

Music for the Ages
I thoroughly enjoyed the fine article, "Video Music" [The Arts] in the October 1980 issue of Omni. I have always felt that Omni has done more to promote concepts not widely understood than any other magazine. The format is easy to follow and Omni's willingness to contact the best-known authorities on any subject needed is greatly appreciated.

I am a student at Boston University, now in my second year of computer engineering studies. For the longest time I had no idea what I was going to do with my education after graduation. Computer graphics at first appealed to me. After some further thought, I have been considering a career in electronic studio techniques. But not until I had read your article did I think of combining the two without compromise. Now I see that this is very possible.

Maybe someday someone will come up with a better name for video music. Until then, I wish John Whitney further success in his work.

Pedro Garrido Silva
Boston, Mass.

Divine Principles
As an occasional reader, I thought the second anniversary issue of Omni was very informative.

As a Christian fundamentalist, however, I disagree with what appears to be your general philosophy (that science and technological advance will not only save us from ourselves but offer us a "better tomorrow") I find this humanistic view light years away from the truth. We should consider those highly advanced civilizations that fell regardless of their extraordinary technology. Their social/moral decay along with other contributing factors, terminated their existence. Many of these factors are becoming evident today in our own international society.

I won't bore you with my own theological convictions except to state that I believe certain divine principles of behavior (not found in today's textbooks) must not be ignored if we are to survive (decently) the next quarter century. Though science is vitally important to our society, its own finite efforts cannot safeguard a tomorrow good or bad. Beyond our limited perception and scientific endeavor, we must rely on mere faith that [God] is the only plausible answer to our plight. And we do have a plight.

Dana M. Groff, Jr.
Tampa, Fla.

Wright or Wrong?
Whenever I hear "scientists" arguing about the credibility of a phenomenon [Scientists and Monsters Continuum, August 1980] that manifests itself through only at best sketchy proof I recall an inspiring story.

So there was a famous bishop in the late 1800s who was considered one of the foremost authorities in science and theology. His name was Wright.

One of his sermons was widely reprinted in many newspapers in the northeastern United States. The sermon suggested that man had discovered just about all there was to be found and that now it was time to relax and ponder the time points of all these discoveries.

At the time Bishop Wright had just baptized the younger of his two sons whose names were Orville and Wilbur.

During a darker period of my intellectual growth I used to proclaim myself a 'realist' until I saw this to be a very naive state of mind. But how safe it was.

J. S. Toddhunter
Fountain Valley, Calif.

Plucked from the Abyss
After witnessing the paranoid spectacle of the Department of Energy making sound and video tapes of American citizens exercising their constitutional right to free expression I want to express my appreciation of your interview with Denis Hayes, of SERI [August 1980]. It's refreshing to see that at least one government agency is making wise and effective use of its funds for a change. Mr. Hayes seems to be a very intelligent, articulate, and sensible person. These qualities are in short supply in our rather wasteful bureaucratic structures. I think it's productive people like Hayes who will play major roles in plucking our planet from the edge of the abyss.

Alan Brookstone
University of Colorado
Boulder, Colo.

Source of Nebulae
The photographs of nebulae reproduced in your November issue from my book Galaxies were not attributed to the scientists and institutions that created them. Readers interested in the sources of these... lovely photographs will want to know that they are page 92, David Malin, Anglo-Australian Telescope Board; pages 93 and 97, Hale Observatories; pages 94 and 95, Royal Observatory, Edinburgh, page 96, Association of Universities for Research in Astronomy Inc. Cerro Tololo Inter-American Observatory.

Timothy Ferris
Hollywood, Calif.

Lobbying for Space
Although the 1980 election is now history I hope enough people took David G. Webb's advice [Space, November 1980]. It's up to us to put into office the people who will push through bills to aid our ailing space program.

Dennis A. Maguire
Andover, N.H.

We agree. A comprehensive listing of grass-roots organizations for space will appear in our next issue —Ed

OMNI
Equal Time for Creationists

I applaud Ben Bova's piece on the creationists [Continuum, October 1980]. Since the rise of science there have been those who have chosen to reject its findings because of their religious or philosophical prejudice. With the recent rise in political activism among fundamentalists, their attempts to influence education have intensified.

Many groups advocating equal time for the creationist viewpoint would have us believe that this is purely a secular matter concerning a balanced approach to a controversial topic. It is obvious, however, that their true objective is a revival of Christian cosmology.

It is disconcerting to note that the movement has some chance of success. A society that gives open-armed acceptance to such notions as ancient astronauts, pyramid power and astrology cannot be expected to scrutinize creationism with an informed or skeptical eye. There is no evidence that state legislators or school board members are any more capable of resisting this retreat from rational thought than private citizens. This may be why the creationists have chosen to advance their ideas by means of public propaganda. Clearly the appropriate forum for the resolution of a scientific controversy is in the relevant scientific journals.

The scientific community must speak out on any relevant topic that captures the interest of the public. The principles and processes of science must be made clear to society at large. Writers like Mr. Bova play an indispensable role in this effort. I look forward to reading his columns.

Steven C. Haack
Lincoln Neb

I object to the way in which Mr. Bova has misrepresented creationists' objectives in having creation taught in schools. A Christian is a lover of truth and despises obvious lies such as evolution. Especially when such lies are incompatible with the truth of God's existence. Anyone who has studied evolution even remotely soon realizes that the theory cannot include God. Theistic evolution is totally illogical. The influences of evolution have already had horrible effects on society. To continue teaching a theory that stands on exceptionally shaky ground is extremely unscientific.

Evolution is a theory that arose not out of evidence from the earth, but out of man's determination to deny God's existence. Evolutionists desperately seek other answers.

I find it distressing that Omni has gone along with the misinformation passed down through the years. Why not run a debate between a creationist and an evolutionist? Let the readers decide for themselves which represents truth.

Craig Miller
Arlington, Tex

I feel that I must comment on Ben Bova's article on creationists in Omni's October 1980 issue. I am a scientist and I believe that biologists must go on gathering evidence and refining their theories. I am also a Christian, and as such I believe in the Bible and the divine creation of man.

I see no conflict between these two views. As a scientist I must accept the evidence that points to evolution. But, as a Christian I cannot help believing that God directed this evolution. The Bible does not say how God created man. It only states that He did it. If evolution was the method that is true and does not bother me. I find it hard to believe that such a world could evolve without some form of divine guidance.

Arthur S. Bland
Albuquerque, N.M.

Bravo, Mr. Bova! Your article on the creationists in Omni's October 1980 issue expressed thoughts that I have long entertained. Unfortunately, the creationists appear unable or unwilling to question the written word. Remember please, that the word was written by man a fallible creature indeed. Thank God (oops) that biologists are willing to question what they are told, that they do not take everything for granted. (Creationists call this faith) If we all failed to question, nothing new would ever be learned. Let us be thankful that there are those who do question "accepted facts" and "obvious truths." Any true biologist would welcome proof that his or her particular theories were wrong if the scope and knowledge of science would be advanced. I am tired of hearing "faith" flung in my face. If proof of creation, or
Earth

By Kenneth Brower

The first alien scouts to look down on this planet are likely to be a hard-nosed bunch, if they have noses at all. A safe assumption is that they'll at least be tougher than the inhabitants of the lush blue-green orb below them. From all that we can perceive of our galaxy, life is no picnic out there. And yet I'll lay odds that their first reaction will be one of surprise.

The whole planet's alive—a lieutenant will say in rough translation, as he adjusts the screen of a life-form detector. He will shake his Spartan head, or heads, in wonder. The entire surface of this globe is a superorganism.

Like all diagnostic equipment in use on their world, the alien's life-form detector resembles a seismograph. The machine will register a wiggly line encircling the earth is a relatively inert, peaceful body and crust—an epidermis of life. The line will be scratchy and discontinuous over the oceans, where life is dilute. It will track thin over deep deserts and over the poles, where life is sparse. But over the soil-coated continents the line will jump and jerk while it monitors the diversity of the life teeming within.

These extraterrestrial scouts will be hard pressed to believe that the soil they find here is not a superorganism. It breathes through pores burrowed by worms. In good soil during one growing season 50,000 worms will overturn about seven tons of soil per hectare. It's alive with bacteria and fungi and sowbugs and centipedes lace their way through it. It slithers with worms. Occasionally it shudders with the passage of a mole.

The diversity of species that aerates the subsoil, and refines the soil, is a superorganism—by most earthly definitions. The soil's great age alone is far more ancient than any bee hive or termite mound. Its growth is exasperatingly slow. A centimeter every 150 to 500 years. In the nutrient-rich layer known as humus, organic molecules 3,000 years old are still on the job.

These dark brown organic macromolecules are the basis of almost all life on this planet. And yet one of the soil's more singular productions, humankind, has been at war with those mother molecules throughout its entire history.

Human presence can be interpreted as a withering of landscapes—an accretion of ruined Edens. Mesopotamia: that once- rich land where 6,000 years ago our sapien produced the wheel is now the wasteland we call Iraq. The United States cradle of the modern civilization that produced the digital watch and put a golf club on the moon annually loses nearly 3.5 tons of soil per hectare. We are a "humusoidal" animal.

President Carter asserted in a recent speech that in 1935 the United States had well over six hundred million acres of actual or potential cropland. In the following 45 years, one hundred million of those acres were effectively destroyed. On the soil that remains, we are producing more crops than ever before. But to achieve this abundance we are poisoning those precious remaining acres with pesticides, fertilizers and salinization. By "mining" the soil we plunder the land and steal from our descendants. The dream of converting biomass into alcohol and gasoline is built upon a soil profile that is steadily diminished each year.

Like so many of our schemes, biomass conversion is a short cut. The idea is to harvest crop residues and leaf litter rather than to wait millennia for them and diatoms to compress into coal and oil. It is a technically ingenious plan but ecologically horrendous. The soil needs the leaf litter and crop residue. Humus requires the constant addition of new decaying biomass to maintain itself. Wherever the biomass harvesters wander the organic component of the soil would be impoverished, and carbon and nitrogen cycles in the soil would be disrupted.

Biomass conversion is a way of taking still more from the eroding landscape and giving even less back. The hitch in the dream of driving on gasohol to the supermarket is that, when you arrive there may be no bread on the shelves.

Soil is overdue for a revolution in the way we think about it. Part of that revolution will manifest itself in a return to organic farming and the nurture of chemical

CONTINUED ON PAGE 101
BRAIN MENDING

By Kathleen McAuliffe

When a vital tissue or organ becomes defunct, cadavers and prosthetic devices are the logical places one would turn to for spare parts. Neither avenue is possible for victims of brain lesion. Their disability results from the death of tissue in a small, confined portion of the brain, often no larger than a grape. But some of these people could benefit from a novel, though controversial, type of organ bank.

Embryos, including human embryos, might become an invaluable source of brain tissue for transplantations. This is the impact of research conducted by Barry Hoffer of the University of Colorado, Richard Wyatt of the National Institute of Mental Health (NIMH), in Bethesda, Maryland, and Lars Olson of the Karolinska Institute in Stockholm. While older animals' brain tissues rapidly degenerate when placed in foreign surroundings, embryonic cells have no trouble adapting to a new abode. The researchers extracted brain cells from a rat fetus and implanted them in a comparable region of an adult rat's lesioned brain. Instead of dying, the cells continued to develop normally and grew into the host's neural network.

But embryonic cells are no more than good colonizers. They are skilled pathfinders and the talent is crucial in repairing lesion damage. Confronted with millions of crossroads called synapses, fetal cells seem to have no difficulty finding their way to the target area. Indeed, even when implanted off course, they have an uncanny way of reaching the destination that nature intended. The navigational feats of birds and fish are tame by comparison.

Already Hoffer and his colleagues are using embryonic grafts to alleviate the symptoms of lab-induced Parkinson's disease in rats. For both man and rodent, the disorder is caused by a lesion in that part of the brain responsible for producing dopamine, a substance essential for normal mood control. The scientists transplant tissue from an area of a fetal brain that corresponds to the site of the lesion in afflicted rats. Approximately two-thirds of the cells survive and establish interconnecting links with a neighboring neural center. As dopamine levels begin to rise, the rats show a decrease in behavioral abnormalities associated with the disease.

We have examined the grafts for about a year, which is almost half the life span of a rat, Hoffer says, and there appears to be no rejection. How do they escape detection by the host's arsenal against foreign invaders? The secret lies in the brain's blood barrier, which screens out antibodies and other lymphatic cells. As far as the body's immunological system is concerned, the brain is neutral territory where foreign grafted cells can coexist with the local inhabitants. The eyes too share the brain's special status of being immunologically privileged. Thereby raising hopes of someday grafting new eyes for the blind.

Much closer to realization is Hoffer's concept of using fetal implants to cure certain forms of brain impairment that involve a local loss of neurons. Besides Parkinson's disease and Huntington's chorea, numerous disorders of the hypothalamus are subsumed in this category. Results from experiments now being done on primates will prove crucial in assessing the clinical utility of this procedure. Even if scientists are successful beyond their wildest dreams, however, the path from monkey to man may be strewn with moral obstacles.

Where are we going to get the embryonic tissue? asks William Regelison of the Medical College of Virginia. You'll have to use aborted fetuses. Abortion fetuses won't do. Are women going to become impregnated to provide embryos? We're faced with a very serious problem, and we'll have to find ethical alternatives to it. For example, if we can develop the technology to grow embryonic cells in culture, that might provide one solution.

Likewise Hoffer, for ethical reasons, rules out using living embryos. But given no other options, he thinks aborted fetuses could indeed supply the donor material. To obtain the fetal tissue, he foresees no need to modify abortion techniques now being used in hundreds of clinics.

Still, abortion itself presents a moral dilemma for many people. Hoffer would much rather find a substitute for the embryonic donor altogether. In the case of Parkinson's disease, he may already have succeeded. The peripheral nervous tissue of an adult he believes could serve the same function as embryonic brain tissue.

"Luckily nature has been parsimonious," Hoffer remarks. Dopamine acts as a neurotransmitter in the brain, but it is also used in the peripheral nervous system, for example, in the adrenal glands. When adrenal cells are used as the graft material, Hoffer found that they become more nerve-like and send out branches that can actually grow into the recipient's brain. This strengthens the possibility that Parkinson's victims might supply their own grafts by donating a portion of their adrenals.

For other brain disorders, nature may not be so parsimonious. If vital neurochemicals are not present in the peripheral nervous tissue, the embryonic...
The next best thing to going there is having someone bring back a present. In planetary science, that someone must be a robot. Planetary return missions were once among NASA's most promising research. Today they are among the most neglected.

The material our Apollo astronauts brought back from the moon showed what actual samples can do. It told us the moon's age and revealed its chemical composition. And that told us about the moon's early years, including the temperatures and pressures at which it formed. The level of volcanic activity, the energy available for lunar evolution, and even the nature of the solar wind.

Planetary scientists need that sort of information as badly as selenologists do. Our missions to the planets' valuable and spectacular as they are, have not been able to provide it. Even the two Viking probes, which analyzed Martian soil samples and relayed those data back to Earth, could not answer the key question: Is there life on Mars? Viking's robot instruments could not perform the sequence of experiments that turned out to be needed.

These experiments could be done by human technicians easily, but NASA's dreams of a manned flight to Mars went down the tubes in the post-Apollo depression. The Soviet Union still plans a Mars voyage, but the trip will probably not occur before 2000.

Instead, however, we could bring some of the planet here. The Russians showed the way by retrieving lunar samples nearly ten years ago. A planetary return mission costs more than a lander, but it would be far cheaper than a manned flight. The hardware prototypes for a Mars return mission have already been built. All that's missing is a commitment to the project, and the money to pay for it.

NASA's Jet Propulsion Laboratory has suggested two ways to return samples from Mars. In one, a sample carrier launched by the shuttle lands on Mars, collects some soil, and returns directly to Earth orbit. In the other, the returning sampler meets a transport vehicle in Mars orbit. The transport vehicle then carries the samples home to Earth.

The direct-entry/direct-return approach is simpler, but the Mars lander's return rockets would have to lift it out of the planet's gravity well. To keep its weight down, the rest of the probe would have to be simplified. It could grab only a random sample from an unselected landing site.

Since both techniques use conventional rockets for the trip to Mars and back, both methods would require at least two shuttle flights to place the hardware into Earth orbit. The direct-entry mission might even need three. But the orbit rendezvous mission could use ion rockets for the transport vehicle (they are too fragile to land on Mars), in this case, a single shuttle flight could do the job. In either case, the price tag in 1978 was about $1 billion, plus the shuttle costs.

The outer planets would be even more difficult. They are so far from the sun that solar-powered ion rockets would not work and even high-performance chemical rockets are probably impractical. And the atmospheres of Jupiter and Saturn are probably too inhospitable for a lander to survive. We'll learn more about that during the Galileo mission, which will probe Jupiter's atmosphere in the mid-1980s.

There is one outer planet mission that might be practical, however: a sampling probe of Titan, Saturn's largest moon. Titan has a relatively dense atmosphere and is now considered the most likely home of life in the solar system, other than Earth.

Another possible mission with more than just scientific interest is a sample return from the asteroids. Laden with metals, organic compounds, and water, the asteroids might be an endless source of raw materials for space industry. The knowledge gained by analyzing an asteroid sample would be incalculable, with enormous economic value.

For today's planetary scientists, however, the idea of bringing home a piece of any planet is only a wistful dream. Unless the United States pulls itself together to rebuild our space program, there's little hope of realizing it. Let's hope that Congress and the administration will soon see the light.
Psychological theorists once considered pleasure an important catalyst of human action. It was so influential that Freud elevated it to principle, arguing that all human life is a struggle between life instinct—the attempt to get as much pleasure as possible—and death instinct—the wish to give it all up and return to dust.

Yet during the past two decades pleasure has suffered a period of neglect. It was too abstract a concept for experimenters. They could gauge the effects of tangible rewards, like offering a researcher rat pellets of food or the opportunity to mount a willing female. But pleasure itself remained difficult to define—one person's pleasure being another's pain—and it was also impossible to quantify.

The coup de grace to science's positive perception of pleasure came from the work of sexologists William Masters and Virginia E. Johnson. These physiological experimenters persuaded subjects to make love in the lab. From their work came remarkably interesting measures of penile erection; vaginal dilation; contractions of the blood flow and other purely physical responses. But not one word about pleasure. Though Masters and Johnson never suggested that pleasure didn't play a part in sex, their approach focused exclusively on physiology.

Today, however, pleasure seems to be making a comeback. Researchers Randy Thomas and Tim Brock of Ohio State University have developed a machine that measures pleasure. The device is a variation of Stanley Milgram's famous pain seat. Instead of delivering the vicious electrical shocks that Milgram required for his study of obedience, however, the pleasure machine treats坐s to exquisite, sensual vibrations.

The subject sits on a pad placed in the seat of a comfortable chair. At the touch of a button, the pad produces undulating sensations. Subjects in Thomas and Brock's surveys rhapsodized about the intense pleasure of the sensations they received. In one test, subjects were allowed to give themselves the experience by pressing the button that set the seat vibrating...
CONTINUUM
Edited by Dick Teresi

WHO SPEAKS FOR SCIENCE?

Is atomic power essential or too dangerous for mankind to play with? If we burn substantially more coal instead, will our planet heat up enough to melt the Antarctic ice cap and create ocean resorts in Kansas?

If you don't feel like deciding these questions, how would you like to determine the acceptable amount of low-level radiation exposure for humans? Or the point at which life begins? Or whether gene splicing is a wonder tool or a potential toy for mad scientists? Or what we are really doing to the ozone layer?

Back in the times when a pope could settle the rival claims of two seafaring nations simply by drawing an imaginary line through a virgin continent, public policy was more easily made. And in those days, even though Copernicus's calculations of planetary orbits might discomfit scholarly clerics, science was essentially remote from ordinary life.

Now, however, we nonscientists—and the legislators who represent us—are required to weigh issues far more ambiguous than the partitioning of terra nova or the movement of the spheres, for our society is balanced rather precariously on increasingly complex technology. We are living in a revolutionary age, says Walter Cronkite. "In one generation we have entered three new areas—the Atomic Era, the Computer Era, and the Space Era. Understanding any one of these requires more information than any one of us could possibly have."

Small wonder then that governments sometimes beguile strange policies and that we must include tough risk/benefit ratios in our equations. Automobiles, which kill 50,000 of us every year, remain acceptable although we debate whether saccharin is worth the putative risk of causing even a few human-bladder-cancer deaths each year. Moreover, so many of our problems are global, not just local or national, and an awesome number of the choices we make could have far-reaching consequences.

And where do we get our information, anyway? Strong emotions and prejudices pollute and pervert the picture. We're vulnerable to hard sells because so much of our knowledge comes at us package, in packets preconceived. Hastily skinned headlines, 20-second TV commercials, and seductive slogans "educate" us about how many billions of mouths world agriculture can feed, the relative dangers of plutonium waste, asbestos in hair dryers, and birth-control pills.

So we mainstream citizens need help. And so does the geneticist when he steps away from bacteriophage mutations to ponder the wisdom of space explorations. But where do we turn for guidance? Who speaks for science? Who has the facts?

Well, there are the long-established scientific medical and technical professional societies for starters. There are voluntary health organizations and government experts with data at their fingertips. And more recently there has arisen an immense new chorus of voices to catch our ear—sometimes urging specific policies, sometimes warning us of inevitable catastrophes if we ignore its advice. Consumer-advocate groups have proliferated as our lives become more interdependent, and as society becomes more conscious of the multiple effects of science and technology on human well-being.

But scientists are political animals, too. Subject to feelings, prejudices, and ideological leanings. It is the obligation of scientific organizations to identify themselves fully stating their purposes and any relationships they maintain with industry or government so that we can better evaluate their contributions.

And scientists, says Nobelist Rosalyn S. Yalow, have a special duty to state what is scientifically known to be fact and to distinguish fact from hypothesis and judgment.

Perhaps it is a sign of the times that one new organization, the Scientists' Institute for Public Information (SIPI), is attempting to gather several conventions' worth of scientists under one roof. Supported by public contributions and occasional foundation grants, SIPI has established a Media Resource Service to give reporters access to several thousand independent experts in fields as diverse as behavior modification, solar energy lasers, and artificial intelligence. When Cronkite calls in, the SIPI people say he'll quickly be given names and telephone numbers of specialists who can explain technical subjects.

Will outfits like SIPI give people more balanced doses of information than they have gleaned from Ralph Nader or the Department of Energy? Maybe so. —ALTON BLAKESLEE

SIPI, 355 Lexington Avenue, New York, NY 10017, is kept busy answering a heavy load of calls from the press. Requests from nonmedia sources must be in writing, says public information director Fred Jerome. —Ed
WOMEN'S BEST-KEPT SECRET

Women are not expected to be able to keep a secret but they guard one vital biological secret better than any other mammal does. According to Dr. James L. Gray, of the State University of New York at Stony Brook, women are unique among female mammals in that they keep their own period of fertility a secret not only from their mates but also from themselves.

In the course of evolution Dr. Gray believes women adopted hidden fertility because it encourages faithfulness in their mates and thus helps them maximize their chances of evolutionary success.

Speaking to the Animal Behavior Society in Fort Collins, Colorado, Gray said that males and females are counted successful in evolutionary terms if they rear many offspring to maturity. For male mammals, there are two strategies to achieve this goal: impregnating as many females as possible and avoiding parental care or impregnating one female repeatedly and helping raise her young.

Females also have a choice of two strategies: hiding ovulation and remaining continuously receptive or displaying ovulation and restricting receptivity to the fertile period.

By choosing hidden ovulation, Gray explained, a woman reduces a man's chances of making her pregnant to about 1 in 30 for each copulation, since she ovulates only once a month. To ensure offspring, he has to copulate with her repeatedly over a period of time. Once this investment is made, the best way for a man to ensure survival of the resulting progeny is for him to stay around fighting off rivals for his ever-receptive mate and helping to care for his children.

Evolutionary success doesn't imply total faithfulness. Gray added, but women's secret fertility means a successful man has to restrict most of his attentions to only a few mates, so that he can impregnate them himself and nurture their young. — Barbara Ford

ANIMAL MYTHS

In our continuing search for scientific truth, we debunk a few more medieval superstitions:

- Snakes are not slimy; they are dry and smooth to the touch.
- Owls are not smart; they have very small brains and to make it soft and slimy so that it will go down their small throats with greater ease.
- Goldenrod does not cause hay fever; its pollen is too heavy to be carried by the wind. The real culprit—ragweed—often grows along with it, but ragweed's inconspicuous flowers usually go unnoticed next to the gold- enrod's bright blossoms.
- Dragonflies don't bite; they eat mosquitoes and gnats, not human flesh. They don't sting: either. In olden days their long, thin bodies and fearsome appearance led people to nickname them devil's darning needles. — Stuart Diamond

"One way to maintain your lifestyle when you're getting poorer is to borrow."
— Andrew Tobias

"A new idea is delicate. It can be killed by a sneer or a yawn. It can be stabbed to death by a quip and worried to death by a frown on the right man's brow."
— Charlie Brower

Say good-bye to the idea that owls are wise. They are not very bright; have small brains, and are among the dumbest birds.
TEST-TUBE-BABY
CLINIC

An Elizabethan mansion, Bourn Hall, is the unlikely setting for the world's first test-tube-baby clinic, which opened this past fall in Cambridgeshire, England.

The clinic is directed by Dr. Robert Edwards and Patrick Steptoe, pioneers of in vitro fertilization whose work was responsible for the birth of Louise Brown in 1978. The fee for treatment at the clinic is £1,680 ($4,000).

Edwards and Steptoe do not guarantee pregnancy. Last year they reported that only 4 of their first 62 implantations had led to pregnancy and that only 2 of those had produced live babies (one of whom is Louise Brown). Thousands of foreign women are already on the waiting list for Bourn Hall, where 90 patients can be treated at any one time. —Bernard Dixon

"Science fiction is a kind of archaeology of the future." —Clifton Fadiman

GNAWS

The land-based answer to Jaws is being provided by beavers, raccoons, and squirrels, which love to masticate TV cables, telephone cables, and similar parts of technology's circulatory system. In New York City, telephone company employees found 830 breaks along 15 kilometers of cable in just one neighborhood. Squirrels like to gnaw on low-voltage lines. The phone company had to encase the cables in steel.

At the 1980 Winter Olympics held in Lake Placid, New York, ABC TV officials found that bears, raccoons and beavers were chewing on the 83 kilometers of triaxial cable strung around Whiteface Mountain. ABC put up fences around the cables. It didn't work. The network even considered skunk oil as a repellent, but technicians objected. Finally, a sonar monitor was installed so that ABC could detect and repair the cables each time they were chewed.

In Florida, a supertermite, which gnaws through plastic and mortar, and various chemical coatings to get at the wood underneath, has been discovered. This termite, of the genus Coptotermes, was found in a Broward County condominium complex. "They are bad, real bad," said one resident who found thousands of them chewing his recreation room.

The termites also have been eating through some telephone lines in Louisiana.

The newer models of false teeth will be made fluorescent with salts of cerium (used in flints) or terbium (used in television tubes).

RADIOACTIVE TEETH

That wonderful, warm glow in Grandma's smile may reveal more than inner beauty. It may be due to radioactive dentures.

Millions of Americans are wearing false teeth that have been treated with tiny quantities of uranium oxide to give them a glow that approximates that of natural teeth. Otherwise, the dentures would look out of place among the real ones.

Uranium tooth were introduced in the mid-1930s. The tiny amounts of radioactivity, judged harmless by Food and Drug Administration standards, came into wide use. In fact, many if not most of the 18.7 million Americans who wear false teeth probably wear dentures that have been treated with uranium.

But the days of radioactive smiles appear to be numbered. Bad press in the 1970s—particularly in Great Britain—has led the American Dental Association to recommend that denture manufacturers forgo the use of uranium as they perfect nonradioactive substances. Among the new fluorescent substances are salts of cerium, used in flints, and terbium used in lasers and television tubes. Within a year such substitutes are expected to all but replace that old nuclear glow.

—Stuart Diamond

Forget your opponents, always play against par." —Sam Snead
AURORA WATCHING

One of the last large-scale natural phenomena yet to be satisfactorily explained is the greatest light show on Earth—the brilliant Northern and Southern Lights. Physicist Arthur Wong and a team of UCLA scientists have worked out a scheme to send high frequency radio waves 40 times greater than those of commercial radio stations to measure the velocity and density of charged particles in the auroral ionosphere (between 105 and 240 kilometers above Earth).

Wong says, "We will have an invisible arm reaching and feeling the ionosphere layer by layer at predeter mined heights, which can cause electromagnetic interactions easily tracked down by radar or seen through telescopes."

The lights get turned on Wong says, when charged particles erupted from the sun cascade through the neutral charge of Earth's magnetic field in the auroral region. But it is not known why the particles which otherwise in space move relatively slowly become so extremely excited in the auroral region that they create spectacularly bright lights.

The ground site, 40 kilometers northwest of Fairbanks, Alaska, is being prepared so experiments can start early this season. The site was chosen because of its proximity to the North Pole and to a nearby radio station complete with radar and telescope. A 15-meter antenna has already been built and a two-megawatt high frequency radio transmitter is being completed at UCLA.

Chief interest in the project comes from the quest for basic scientific knowledge, but Wong says the study may yield some practical applications. One is to understand and attempt to diffuse the magnetic storms that often accompany auroras and that disrupt communication. Another is to find a way to ward off aurora-induced currents that can flow through pipes. A prime example is the Alaska pipeline which has been seriously corroded by these currents.

―Caroline Rob

(Science) has conquered many diseases, broken the genetic code, and even placed human beings on the moon. Yet when a man weighs eight hundred and eighty-four pounds, nothing happens. Because the real problems never change."

—Woody Allen

CAT SPIT

If you're allergic to cats and if allergy shots don't help, it may be because the fault lies, not in your pet's pelt, but in its saliva. Until recently, it was believed that the allergen responsible for sensitivity to cats resided solely in the pelt. Extracts of pelt are used to desensitize persons allergic to cats. The treatment works better for some people than for others.

Dr. Samuel Bukantz, chief of the division of allergy and immunology at the University of South Florida College of Medicine, has found that some patients who are allergic to cats are more sensitive to their saliva than to their pelts. Both skin tests and test-tube blood studies furnished the same results.

Dr. Bukantz also determined that cat saliva made patients release histamine, which produces allergy symptoms. Bukantz's work confirms earlier studies by Dr. Harold Baer of the U.S. Food and Drug Administration who showed that the cat's saliva, not the fur, is the allergen.

Someday, Bukantz predicts, an extract of cat saliva will afford better protection than today's extracts. The saliva extract would be purer (pellet extracts usually include some blood) and easier to obtain and could be taken without sacrificing the cat. Until a saliva extract is available, however, it may be a good idea for anyone who is sensitive to cats to refrain from kissing them — on the mouth, anyway.

—Barbara Ford
CAPTURING BLIZZARDS

Wouldn't it be nice to capture the blizzards of January and then release them to cool your house come July and August? A Princeton University physicist has done just that.

Last summer former Los Alamos bomb maker Theodore B. Taylor cooled a building on the Princeton campus by using melt water from 1,000 cubic meters of ice made with a ski-resort snow machine. The ice was stored in a plastic-lined, tapered pit 20 meters on a side and 5 meters deep, and covered over with a tarpaulin.

During the summer the melting cold water was pumped through the building's radiators. Though the ice took just 250 hours of snow blowing to make, it provided the same cooling as four standard residential air conditioners—working through an entire summer.

When the energy books had been balanced, this first attempt already proved approximately equal in cost to traditional chilled water cooling. This winter Taylor and his colleagues are considering less costly methods of making the snow and more important better methods of containing and preserving it.

This idea comes from a man who for many years was regarded as one of the foremost designers of atomic weapons. As a conceptual physicist at Los Alamos Scientific Laboratory, Taylor designed the largest-yield fission bomb ever exploded and also what was then the smallest ever made. For a while he worked on a secret government project to design an interplanetary rocket propelled by 2,000 atomic bombs dropped one at a time. He once smoked a cigarette he had lit with radiation from a bomb of his design focused by a parabolic mirror — Stephen A. Dujack

SPELLBOUND ASTHMATICS

A San Antonio, Texas, pediatrician has discovered a promising treatment for asthma

One asthmatic boy visualized himself running along a street. When the energy bars had been balanced, his self-hypnosis—without experiencing noticeable adverse effects. Under hypnosis four children registered no reaction at all to an allergy skin test

A San Antonio, Texas, pediatrician has discovered a promising treatment for

One asthmatic boy visualized himself running along a street. When the energy bars had been balanced, his self-hypnosis—without experiencing noticeable adverse effects. Under hypnosis four children registered no reaction at all to an allergy skin test

A San Antonio, Texas, pediatrician has discovered a promising treatment for

One asthmatic boy visualized himself running along a street. When the energy bars had been balanced, his self-hypnosis—without experiencing noticeable adverse effects. Under hypnosis four children registered no reaction at all to an allergy skin test

A San Antonio, Texas, pediatrician has discovered a promising treatment for

One asthmatic boy visualized himself running along a street. When the energy bars had been balanced, his self-hypnosis—without experiencing noticeable adverse effects. Under hypnosis four children registered no reaction at all to an allergy skin test

A San Antonio, Texas, pediatrician has discovered a promising treatment for

One asthmatic boy visualized himself running along a street. When the energy bars had been balanced, his self-hypnosis—without experiencing noticeable adverse effects. Under hypnosis four children registered no reaction at all to an allergy skin test

A San Antonio, Texas, pediatrician has discovered a promising treatment for
HOT-TUB HAZARDS

The Consumer Product Safety Commission warns hot-tub aficionados against getting themselves into hot water. The agency recorded ten hot-tub drownings in 1979—all caused by excessive temperatures—including three linked with alcohol consumption.

A husband and wife drowned together in a hot tub in California. Both were heavily sedated with liquor and medication for high blood pressure and heart conditions.

Most hot-tub makers post guidelines formed by the National Spa and Pool Institute Diabetes or patients with other serious ailments are advised to consult a physician before they take a dip. Persons taking regular medication should forgo long baths in a hot tub to avoid nausea, dizziness or fainting. Drowners can make a hot-tub bather pass out, slide under and drown. Soaking in water over 41°C can also bring on heart stroke or even hyperthermia if the body fails to regulate its internal temperature.

Pregnant women—or women likely to become pregnant—should keep hot tub water below 40°C, says Mary Ann Sodwick Harvey, a research associate at the University of Washington Medical School.

Dr. David W. Smith, also affiliated with this school, recently studied pregnant women whose hyperthermia seemed to have caused fetal brain damage and deformation. He began the research after observing that guinea pigs were more prone when overheated to bear offspring with birth defects. One woman whom he examined—what suffered hyperthermia in a sauna while pregnant—bore a baby with dislocated hips, brain damage and a nervous disorder—Robert Brody.

CANCER SLEUTH

A radioactive drug now in the works might ultimately detect most cancer cells earlier than current methods do—even, perhaps, before they develop fully into tumors.

This diagnostic sleuth may also guide doctors in monitoring metastasis (tumor growth) and in determining whether cancer patients respond to chemotherapy. Test results for two patients given the drug at Vancouver General Hospital in Canada, experiments financed by Sero- no and by Nuc-Med, Inc., and Nuclear Pharmacy, both in Albuquerque, New Mexico.

In theory, this drug can detect tumors before there are any clinical manifestations such as internal bleeding and lumps on the breast,” says Fred Mondragon, of Nuc-Med.

The theory is that most cancers in human secrete a placental hormone called human chorionic gonadotrophin (hCG) that and when animals such as sheep are injected with hCG they produce an hCG antibody that scientists can extract and isolate from blood samples. They tag or label the antibody with technetium 99—the most widely used radioactive drug—and inject the substance into the bloodstream.

Now most “tracer” drugs are targeted to reach certain organs, such as the heart or lungs, to find and pinpoint disease. But the new radiotope latches on to the hCG that surrounds cancer cells and leaves normal cells alone. A gamma camera imaging scan records this detective work as a dark spot (the cancer) contrasted sharply against a grayish background. The most effective radioactive agents now available can detect only certain cancers, and then only about half the time—Robert Brody.

Cancers show up as dark spots.

were seen as promising enough to encourage clinical trials on humans in the United States as soon as the Food and Drug Administration gives an okay. Preliminary tests on mice, rats, rabbits, and dogs have demonstrated that the drug is safe.

“It is possible this agent can detect ninety percent of all cancer,” says Dr. David Crockford, of Sero- no Laboratories, in Switzerland. He developed and patented the drug with Dr. Buck Rhodes of the University of New Mexico College of Pharmacy which is conducting

“All progress is based upon a universal innate desire on the part of every organism to live beyond its income.”

—Samuel Butler
FAST-FOOD BEES

The flourishing fast-food industry has produced yet another side effect—an explosion of bee populations and concern about the medical effects of more frequent bee stings.

Bees, it seems, love most of the food now commonly eaten on the street—hamburgers, hot dogs, steak sandwiches, ice cream, soda and beer. But this has produced an explosion in the population of yellow jackets which are really a breed of stinging wasps. Some people have been stung in the mouth while they had a wasp take a bite of the same hamburger, observes Roger A. Morse, a Cornell University professor who has been studying the insects.

Several dozen documented deaths from bee stings have been recorded in recent years, but researchers fear the toll may climb. Bees are now considered in many areas as the single most troublesome summer pest. A single sting can kill an extremely allergic person within half an hour, Morse said.

Scientists at Cornell have been developing a bee vaccine, using venom from yellow jacket colonies. To collect the venom, the researchers put an electrically charged grid of wire under a laboratory bee nest. The wire repeatedly shocks the bees, which become angry and attack the device by stinging it. The venom drips down onto plastic sandwich wrap and is collected.

The researchers also have discovered various ways to prevent bee stings besides abstention from fast foods. One is not to smell—either good or bad. Both kinds of odors attract bees. Another is to jump into a nearby body of water. The bees won't follow—Stuart Diamond

“Science is a world of most unlikely truths. And if we think that it works, we have to remember the imaginative courage of men who were willing to fly in the face of their five senses from the day of Galileo to Einstein.”
—Jacob Bronowski

SCHMOO TREE

An almost-magical tree that can be used as a cocktail snack, a fertilizer for homes, fuel for stoves, a coffee substitute, a flour surrogate for a child's candy, and cattle forage has gained scientific attention as a boon for poor nations.

The tree, a relative of the mimosa, can grow 4 meters a year to a mature height of 20 meters and to a thickness of half a meter. Its cut stumps regrow so fast the National Academy of Sciences says it “defies the law of physics.”

The scientific name is Leucaena leucocephala, and its disciples nickname it the “schmoo” after the mythical Al Capp cartoon creature that produces rich cattle feed. They are now eaten like candy by children or—dipped in a pepper sauce—by adults as hors d'oeuvres. One tree can produce 20,000 seeds a year. The seed pods can be eaten raw, popped like popcorn, ground into flour or coffee substitutes, made into red and brown dyes, or painted as ornaments that are then sold. The pulp can be made into paper. Bees appreciate its small white flowers.

Questions remain about its growth under intense cultivation, but scientists believe the schmoo tree holds great promise. They suggest that researchers should develop the best strains so the tree can be widely grown.

—Stuart Diamond

“I am sorry to say there is too much point to the wisecrack that life is extinct an other planets because their scientists were more advanced than ours.”
—John F. Kennedy
NOT-SO-MIGHTY MOUSE

Ever meet a mouse with a languid libido? If you do, there's a chance its mom was a pothead.

University of Texas researchers Susan Daltorio and Andrzej Bartke found modest amounts of tetrahydrocannabinol (THC) or cannabidiol (CBN) to pregnant mice the day before they gave birth. THC and CBN are the chemicals primarily responsible for the marijuana high.

Then the nursing rodent mothers received six additional daily doses. Sixty to 80 days later when the male offspring had attained adulthood and were tested for machismo, there wasn't a Mighty Mouse among them.

The THC-exposed young were fat and had small testes. In both the THC and CBN groups, courtship was drastically impaired. The THC males never bothered to mount receptive females and the CBN males lost interest in mid-coitum. Yet none were sterile.

The afflicted mice registered low levels of plasma LH (luteinizing hormone) and FSH (follicle-stimulating hormone) — gonadotrophins responsible for the production of testosterone and other sex-related steroids. Even secondhand exposure to THC and CBN at sensitive periods of development appears to affect the endocrine system permanently, the study concluded.

"We don't yet know exactly how or why we know the implications for humans," Dr. Daltorio says. But it's conservative to say that pregnant women should avoid marijuana. — Judith Hooper

GRAFENBERG SPOT

Two bold discoveries have emerged in the realm of human sexuality. Researchers have found that there is, in fact, more than one kind of woman's orgasm and that women can ejaculate, despite the fact they have no prostate gland.

The evidence comes from John Perry and Beverly Whipple, a psychologist and nurse team of Associates in Biofeedback, in Vermont and New Jersey. "We have films," they report, "of the ejaculation squirting out in response to direct stimulation of an area called the Grafenberg spot. It is located in the anterior wall of the vagina about an inch behind the pubic bone. We think it's the female prostate."

The ejaculated fluid that they've analyzed is chemically distinct from urine and vaginal lubrication. It's most like vasectomized-male ejaculatory fluid, says Perry.

To determine when a woman is having an orgasm, Perry and Whipple use a vaginal myograph, which measures muscle tension and the forceful contractions of the pubococcygeus (PC) muscle during orgasm.

During some orgasms that is. The researchers were mystified because some women reported experiencing an orgasm when the vaginal myograph showed no significant PC muscle activity. Perry and Whipple invented a uterine myograph and added it to their recording repertoire. They found that some women experience orgasm when the uterine myograph shows activity, even though the vaginal myograph doesn't, and even when no clitoral stimulation is involved. The empirical results of our work, Whipple says, "allow us to propose that vulval and uterine orgasms describe the two ends of a continuum that represents the involvement of major muscles that participate in the different types of orgasm."

And the two researchers have reassuring news for some women. "Medical doctors often diagnose patients who ejaculate as having urinary stress incontinence," they say. "Now it seems that many women who are embarrassed to be called bed wetters actually have retrograde ejaculations' into their bladders, and this creates an urgent need to urinate after sexual activity."

"If you're doing something the same way you have been doing it for ten years, the chances are you are doing it wrong." — Charles Kettering
FUSION ODYSSEY

Rockets soar on pulsing sun power while cities bask in the glow of hydrogen light as a new age emerges from the atom's core

BY MIKE EDELHART

Tilting back in my comfortable, contoured seat, I adjust the small television screen directly in front of me to obtain a better view. Through tiny earphones provided by the flight attendant, I hear the crisp, technical chatter of the crew as they ready our shuttle for liftoff. Outside my cabin window the flat expanse of the Interplanetary Tourist Embarkation Base stretches toward the city, several kilometers away. Though it is long past midnight, lights still blaze in the city. Conservation is no longer the national bugaboo it was in my father's day. Glowing lights outline the dark, vast expanse of a fusion-power plant stationed between the spaceport and the city.

The tank-like building—a friend of mine compared it to a humpbacked tortoise—is responsible for all the casual energy use in the city and for this rocket trip, too. The shuttle is being launched at night because the power drain on the fusion plant is minimal. In a few moments all that excess power will rush toward the belly of our ship and will begin the process that is going to hurl us beyond the atmosphere.

Voices in my earphones become more insistent. Service crew members hustle about. For a moment silence, then a countdown. The video screen displays the marvelous过程 taking place below.

At the flick of a switch, millions of leftover kilowatts pour into a pharos of powerful laser cannons arrayed around the base of the ship. Searing beams of light shoot forward, converging on a circle of mirrors. A computer chatters in my earphones. The mirrors move ever so slightly, focusing each violent red beam until a solid scarlet column of force shoots upward from the mirrors. The picture on my screen is so intense that everything around me assumes an eerie red glow.

Slowly the shuttle begins to lift, pushed skyward by a thick shaft of fusion-generated laser light. Within seconds the heavy hand of g force distorts my view as, from the

PAINTING BY VINCENT DI FATE
The laser glow soon vanishes. We have reached escape velocity. The pilot switches the view on my television to a forward camera and magnificent space. I can see stars. The foreground floats the landform of Prometheus, an interstellar liner that will run through my long-awaited excursion through the asteroid belt.

Unlike the old-fashioned chemical rockets I've inspected in the Smithsonian, Prometheus won't blast off in a roar of flames and then drift away in the solar system. Fusion gives our ship the steady-state power to drive a star, slow down, accelerate, and maneuver. Will Space travel no longer require the elaborate planning that comes with aiming toward short-lived launch windows? Once my shuttle and Prometheus dock, I rush to my seat in eager anticipation of my first flight on a fusion-torch rocket.

Again my video screen lets me see the interplanetary vessel's launch. The camera view now comes from a small satellite many kilometers below Prometheus. My television screen shows the spacecraft's insect-like configuration. At first the fusion rocket exhibits a laser-fusion-power plant, but with the solid container replaced by an invisible magnetic nozzle.

Stand by, the pilot intones over the earrings "Ignition!" On the screen vivid laser flares penetrate the explosion chamber to strike a pellet of fusion fuel. A white-hot flare saturates the screen. When the cameras adjust, the screen shows the awesome finger of sun power like a small solar flare. Blasting from the rocket's magnetic nozzle. The torch of Prometheus has been lit. We drive toward the stars.

Fusion power has a most stunning impact upon life by this year 2055. My father and I often speak of it. He finds fusion's dominance almost incomprehensible while I turn my recollections of the fusion era quite shocking.

My father was once a miner. He is still young enough to dig coal, but for the past 20 years he has been retired from the government's fusion displacement pension plan. No one mines today. There is no reason.

To coal is probably the most worthless material on Earth, oil runs a close second. We don't even use oil for lubrication any more; fusion-generated synthetic chemicals do a much better and cheaper job.

The hard times my father remembers seem very remote to me. Today life is infinitely rich in resources. Our fusion plants generate all the power we could possibly use. More important, they make it possible to create almost any material we want and get rid of anything we don't want. The virtually limitless powers of heat from fusion enable chemists to create chemicals that were inconceivable when Dad was my age. If we need a new lubricant for fusion powered factories, we can create it. If we require more steel, the fusion reactor can synthesize it. Helium plants separate it out of ancient trash dumps. As a happy sidelight, our economy has become very manageable because supply and demand can be precisely controlled.

At the other end of the cycle, fusion gives us the power to transform any material we don't need. Dad says that when he was young, chemical wastes caused serious public concern. Such wastes lay around for decades while scientists argued about ways to eliminate them. Now we just leave our wastes into the fusion torches, which break them down into simple, safe atoms.

A few decades have passed since fusion was first seen as a realistic dream in an energy-parched world. In the 1970s, Dad says scientists knew there was enough energy locked in one cubic kilometer of water to surpass all the known reserves of oil. They understood, too, that the key to releasing this energy was to make two deuterium nuclei—containing a proton and a neutron—meld together to form a helium nucleus. They had even used the process to manufacture horrendously destructive bombs. But figuring out how to control the reaction proved troublesome.

How scientists wondered could they sufficiently simulate conditions within the sun to force the positively charged nuclei to overcome their electric repulsion and combine? Obviously scientists couldn't work with the trillions of tons of matter the sun has instead, they would have to raise a tiny bit of deuterium to solar temperatures, this would begin the fusion reaction, which could then sustain itself. At the time many people had an image of a fusion reactor as a boiling inferno. They didn't realize that while the temperature of fusion hydrogen had to be raised beyond 350 million degrees Kelvin, the amount of matter used was so small that little actual heat was involved. A liter of deuterium—in which one proton is joined by one neutron—held in fusion-reaction conditions contains only 10,000 calories of heat barely enough to warm a cup of coffee.

Even so, achieving the temperature and pressure required for fusion took much ingenuity. The basic problem was containment. When the hydrogen nears fusion level it achieves a form known as plasma, a gas with the electrons stripped from its atoms. If the plasma touched any other object, it would immediately give up all its heat making fusion impossible. So some method of containing it in a vacuum chamber was seen to be essential. All sorts of imaginative ideas were tried.

One approach magnetic fusion used various techniques to heat a cloud of fusion fuel until it became a glowing gas, then trapped the hot gas in a magnetic bottle. Scientists knew that the basic ingredients of fusion—deuterium and tritium—have a positively charged electron circling about their positively charged central nucleus. In their natural state the atoms have no net charge and ignore magnetic fields. But when the atoms were heated until they became a glowing gas, the electrons were stripped from the nuclei. The interlaced clouds of negatively charged electrons and positively charged nuclei could now interact with magnetic fields. If the magnetic fields were shaped properly they contained the glowing cloud of gas, increasing the chances that the rapidly moving nuclei would collide and fuse together.

In the 1970s fusion reactors were classified by the shape of their magnetic bottles. The solenoid was a cylindrical magnetic field generated by a long coil of wire. Solenoids had "pinched" ends to contain the plasma, but they had a tendency to leak. One solution to the leaking problem was to bend the solenoid into a circle, joining the ends and creating a doughnut-shaped magnetic field. The plasma still tended to leak out the sides, though not as badly because the curvature was stronger on the inside than on the outside. To counteract this tendency, scientists introduced a twist to the magnetic field, so that it imitated the cords in a ring o-rop. Two methods accomplished this magnetic 'twisting'. One method used the coils carrying the currents that produced the magnetic field. The other induced a current in the doughnut of plasma itself. The magnetic field from the plasma current combined with the magnetic field from the coils to produce a magnetic bottle.

A third shape for a magnetic fusion field was called the mirror machine. It used a coil wound like the seam on a baseball. The magnetic bottle it made looked like a twisted bow tie. Combinations of these basic forms were also tried. Two mirrors coupled together as well as long solenoids with mirrors at the ends.

Eventually the leading candidate in the race for magnetic fusion became the Russian-invented Tokamak (an acronym signifying toroidal magnetic chamber). The Tokamak was a large, fat doughnut wound with a coil of wire to create the primary ring-shaped magnetic bottle. An iron-transformer core passed through the middle of the doughnut which, when activated with another coil, induced a current in the plasma that twisted the primary magnetic field.
field. Because of this need for a transformer, the Tokamak was limited to pulsed operation. Although the on pulses could last many minutes, a time came when the machine had to be shut off and the transformer reset to zero so the process could start again. This necessity for pulsed operation was the Tokamak's drawback. Eventually scientists achieved a constant twist in the magnetic field while still maintaining the advantages of the Tokamak.

In inertial fusion, a second path to sun power, the energy needed to raise the temperature of hydrogen fuel is added quickly. This reaction happened so fast that the inertia of the particles kept the fuel from expanding too quickly. The two primary approaches to inertial fusion used focused beams of lasers or high-speed particles to impinge tiny pellets of fuel. This compression produced the temperatures and densities needed for fusion to occur.

At Lawrence Livermore Laboratory, for instance, a huge, multibed laser cannon named for Shiva, the multarmed god, concentrated kilowatts of energy onto milligram pellets of fusion fuel. In these early laser implosion experiments, researchers were able to compress the deuterium gas pellets until the fuel was denser than any naturally existing form of matter. Some fusion reactions took place.

In 1978 the Princeton Plasma Physics Lab Large Torus experiment created temperatures high enough to ignite the plasma, but the plasma wasn't sufficiently dense. In 1977 the MIT Alcator A experiment created plasma densities sufficient to produce energy successfully, but the plasma wasn't nearly hot enough.

By the mid-1980s the imperfections had finally been squeezed from the fusion system. Both implosion and magnetic fusion were found to have some applicability. By the 1990s, fusion had emerged from the laboratory. In that decade the first full-scale fusion test facility was built near our city.

One of my earliest memories is the day Dad and I went down to watch the engineers retrofit our local water plant to provide fuel for the fusion reactor. I was impressed and excited by the big machines and hard-hatted workers; but it wasn't until later that I understood what they were doing. The engineers were routing the city's water through a small plant that extracted all the deuterium atoms from the simpler ordinary hydrogen. One water molecule in every 6,500 contained the heavier deuterium, which would be used to fuel the fusion reaction. From the separation plant a tiny pipe, just big enough to supply the jet for a drinking fountain. Carried the flow of heavy water to the reactor site. Remember, my father telling me at the time that the little pipe carried enough fuel to power all the machines in the world. I was awed.

About five years later the experimental fusion station was finished. A surprisingly small, squat building, it was set well apart from other surroundings and heavily shielded to prevent possible escape of high-speed neutrons. At that time the deuteron used in fusion created many high-speed neutrons which had to be handled with care. Now we use a better reaction that emits hydrogen with boron and produces no neutrons whatsoever.

Over the next few years more and more positive news came from the fusion test site. Proper temperature and pressure were achieved. Reactions that generated more power than was required to contain them became standard. Ever more energy was produced. And steadily the hardware for turning the forever energy of atoms into usable power improved.

The day of the crucial system test came when I was eleven. At noon that day the local utility was going to turn off its power plants one by one. The power would be replaced by electricity from the fusion plant. At the appointed hour, all lights flicked off and the fuse box later flicked on again. The age of fusion power had arrived.

Once the potential of the new energy source was demonstrated it spread like lightning across the globe. Every country threw all available funds into building fusion stations. During my adolescence fusion settled in as the basic energy source on Earth. But contrary to what some early fusion advocates had hoped, it wasn't cheap. Fusion didn't wipe out energy costs. The plants were expensive and we are paying for them still. Refilling the energy production system and coping with societal change also cost money.

But fusion's fuel costs were fixed. No longer have to worry about energy expenses continually rising. Nor do we have to fear the OFEC of days. After all what group can control a resource that is universal? Fusion will become gradually less expensive as the cost of the new power source hits every corner of the economy. When mankind recovers from the costs of converting to fusion, the price for our energy will become much lower than it is now. The basic effect of fusion is that in my father's youth, things looked as if they would only get worse, but now they look as if they can only get better.

My dad gets emotional when he talks about the good life we live now. He remembers the desperation of the day's before fusion, the sense that society was racing against time to develop a new energy source before fossil fuels were totally depleted. He looks back aghast at the political and emotional resistance to fusion at a time when the human race stood on the brink of extinguishing itself. Fusion Dad says was humankind's last best hope for surviving its own excesses. He still from time to time can't believe that we managed to successfully implement it in time.

As I look out the window of my spacecraft, watching the solar system swirl by, lifted on a pillar of solar flame. I can imagine a different—or better—world.
GIVE THE BEST POSSIBLE PRESENT. THE FUTURE.

This holiday season give your special friends something really special. Give them the world, the universe and beyond. Give them Carl Sagan and B.F. Skinner and Alvin Toffler dissecting the mysteries of the universe and the human mind.

Give them Ray Bradbury and Frank Herbert and Robert Heinlein creating imaginary worlds that have a way of becoming real. Give them thinkers like Stephen Hawking, planners like Buckminster Fuller and doers like Harrison Schmitt.

Give them Omni.

Omni is the magazine of the future that started a revolution in the way people view the incredible scientific and technological breakthroughs of the 1980s. It is the bold, graphic, plain-language science magazine that has become a forum for discussing scientific questions that both stimulate and trouble us — and a platform for those of us who believe our country must have more realistic policies toward science in general and space in particular.

Omni will introduce your friends to a world of growing intellectual debates, exciting drama and infinite hope.

A full-year gift of Omni — 12 thick, dazzling issues — costs only $18. That saves you $6 off the newsstand price and includes a handsome gift card to announce your thoughtfulness. So complete and mail the form to send those special friends of yours the best present possible: the future.

Next year in Omni your friends (and you) can look forward to such exciting and informative pieces as:

- The Energy Puzzle: Year-long emphasis on the exciting new technologies that can end energy shortages starting with a special issue on fusion.
- Robotics: Machines that move, talk, work on assembly lines and at the bottom of the ocean, make their own decisions, and do jobs that humans cannot perform.
- Genetic Engineering: From cloning to test tube babies, from microbes that gobble up oil spills to new cures for killer diseases, the biological revolution is transforming our lives.

The New Space Program: NASA's space shuttles will open the High Frontier taking men and women into orbit for advances that will lead to solar-power satellites, lunar mining, and factories in space.

Year Enter a one year subscription (12 issues) to Omni in the name listed below. I enclose my check ($) or money order ($) for $18 — a savings of $6 off the newsstand price. For United Kingdom Subscriptions send payment of £11 to Omni Subscription, 2 Bramber Rd., London W14.

Address: ____________________________
City: ____________________________
State: ____________________________
Zip: ____________________________
Name: ____________________________
Account #: ____________________________
Expiration Date: ____________________________
Signature: ____________________________

For United Kingdom Subscriptions: Send payment to Omni Subscription, 2 Bramber Rd., London W14.

The U.N.'s Moon Treaty: If it's made disastrous for Western space operations, we'll show you why and how you can help prevent this disaster from happening.

Plus award-winning science fiction, art and photography, regular columns on space, society, art, the earth and UFOs, our Continent data bank, games and outspoken opinion — and more.
THE BUSINESS OF FUSION

BY R. BRUCE McCoy

Dr. Thiro Ohkawa of General Atomic Corporation oversees his miniature suns. The larger Doubled III in the world's largest privately built tokamak fusion reactor. Standing inside a gigantic shed hidden away in the ravines of Torrey Pines Mesa near San Diego, it weighs 272,160 kilograms and stands some ten meters tall swathed in 163,296 kilograms of superconducting magnets and high-energy beam generators that look like toilers that have thyroid problems.

The smaller pseudo-sun stands in Dr. Ohkawa's garage. After working all day on the government-backed magnetic pair, Ohkawa and his crew spend their nights tinkering with an entrepreneurial contraption - OHTE (from the Japanese word for "check"). It looks like an M.C. Escher birdcage but Ohkawa says offhandedly, "If it's successful, Doubled III would become obsolete.

Ohkawa feels his privately funded machine could yield a commercial reactor just about four meters in diameter by 1990 at one tenth the cost of those being developed by Main Line government programs. It could be mass-produced and plugged into and out of existing power plants like a light bulb.

With an inventor's glee, Ohkawa master of the mammoth machine explains the beauty of the small: "The idea up until now has been to make fusion engineering harder and the physics easier, so that we could study the fundamentals of the physics involved. But now is the time of fusion when we must make the job harder for the physicist and easier for the enginuirer so that we can create power plants that are simple enough to build commercially. From an engineering standpoint, OHTE is almost like a dream."

Ohkawa represents the two sides of private fusion development in the United States today: massive, megawatt systems linked to government grants and programs balanced by tiny, idealistic, hardware-light creations supported by private sources or a single entrepreneur's enthusiasm. Over the past ten years private investment in fusion has reached $15 million a year; a pittance when compared with the Department of Energy's $400 million annual fusion budget and the $80 billion spent by American importers last year for oil.

Though dollar amounts are modest, the number of companies involved is considerable. High-tech giants like Grumman Aerospace, McDonnell Douglas and TRW are operating government fusion labs and huge Main Line experiments. Small development companies, such as Mathematical Sciences Northwest and KMS Fusion, are probing ever more flexible ways of creating fusion power and tying it into a workable commercial network.

PHOTOGRAPHS BY DAN McCoy
The fusion economy is a social, not technological, issue. Without it, we will stay low-tech, exporting wheat, importing cars.

Most fusion experts project that a mature fusion economy will develop by the year 2050. Many in fact believe that the successful development of fusion by then will be necessary to maintain a stable U.S. economy without it our system will crumble. Dr. Dave Dingee, of Battelle Pacific Northwest Laboratory in the state of Washington, suggests that fusion will first enter the energy mix in about 2020 as a breeder reactor, producing fuel for already-existing fission power plants. Twenty years later, he speculates, the first true fusion reactors will be on line, generating nearly 15 percent of all the energy society requires.

However, other experts take exception to this view. They note that the large capital costs of fusion developments — upward of $50 billion — have soured utilities on giant tokamak reactors, which will cost billions of dollars each and last only about 30 years. Clint Ashworth, president of Pacific Gas and Electric Company, for instance, recently said that, "What this country needs is to orient its fusion program more toward turning fusion into a real energy option and not just another nuclear reactor. What we don't need from fusion is a huge complicated nuclear plant with many of the same problems as the nuclear plants we already have."

William Studer, of Dow Chemical Company, who tracks fusion...
Tokamaks tested. kamaks compared maintains Associates, development into main sector, thwarted, commercial elitist also. si.on developments Though the size. Douglas, power heed will be. nuclear reactor's reactors. To-2000, are and up grading you will be. three years. By that's disposable, Bussard has been on the inside of fusion since its early days. Maglich has stood on the fringe of the fusion revolution. Since 1977, his fusion machine Migma has been idle for lack of funds. With $6 million raised from private sources, Maglich developed his controversial idea based upon the relatively unknown physics of colliding ions as electrons and nuclei. Because temperatures achieved are some 200 times those of nor
mal fusion reactions. Maglich claims that Migma will be able to use the advanced nonradioactive fusion fuels, such as lithium and boron. This could produce a fusion-energy system devoid of any radioactivity.

Migma consists of a cylinder 1.3 meters in diameter and 2 meters long that produces two to five megawatts, the amount of energy needed to power an average block in midtown Manhattan or an entire suburban shopping mall. Large power stations could be created by combining these "migmacells," as Maglich calls them. For the first time, he asserts, this offers mass production in energy. Utility companies have dreamed for years about having standard power stations. Now they can have them. Migmacells render high-tension wires and huge power plants obsolete and allow poorer countries to participate in fusion. In place of a $200 million fusion reactor, Third World countries could afford a $1 million migmacell.

The Electric Power Research Institute (EPRI), a clearinghouse of energy programs, is funding a TRW study to assess future uses of advanced fusion reactors. Robert Scott, director of EPRI's fusion program, believes advanced fuel systems will "give utilities an energy source that can be placed in urban centers. When fossil fuels are exhausted, electrical utilities will face the problem of being excluded from urban sites. Since half the consumer's electricity costs come from transmission, giving up those locations will be an expensive proposition."

Another small reactor design is proposed by Mathematical Sciences Northwest Inc. (MSN) of Bellevue, Washington. Considered by many the best small survivor of the fusion program, the company has been working on laser and magnetic fusion since 1975. Using a Soviet concept reported a few years ago, MSN developed a compact reactor design called Tract which eliminates the need for large confinement magnets. Funded at the outset by the Energy Department, Tract will cost $100 million for a 7.3 x 26 meter pilot power plant. If initial tests prove successful, a Tract plant could be built by 1990.

Industry favors smaller fusion reactors because they have more uses than the large steam-kettle methods of harnessing star power. Fusion systems of every size can be used as fuel factories for existing fission reactors. Both small and large designs can breed plutonium and other fusion fuels from low-grade ore at one tenth the cost of today's nuclear fuel. Not only would this uranium be cheap, but it would also not have to be developed to weapons grade, reducing nuclear fears.

The advantages of small designs center on cost and adaptability. For example, government and private studies show that small fusion plants can produce steam three times as cheaply as coal-fired plants can. And the plug-in replaceable fusion units, some experts claim, could be used to retrofit every power plant in the United States. For a illustrative look at the future, see the photo on the opposite page. For a smaller illustration, see the photo on the opposite page.
Science will harness the sun's power because one man whipped Congress into line

BY DANIEL S. GREENBERG

Mike McCormack ponders the questions: How did you do it? How did you get Congress to pass a billion-dollar fusion-power program on the eve of the last election? Why did federal legislators vote for an energy machine that few of them understand—one that won't produce commercial electricity until at least the year 2000, if then?

"I explained to them," McCormack responds judiciously, "that fusion is the most important energy development since the controlled use of fire." He pauses a moment to let that statement sink in, then adds, "It is, you know."

Suddenly it's clear: Suddenly it's clear: The blocky, graying ex-chemist isn't merely the congressman from Yakima, Washington. He's a messiah in horn-rims—the messiah of fusion energy. McCormack is the reason why the United States will mount an Apollo-style effort to put fusion power on line as quickly as possible.

McCormack's achievement is even more impressive when you give it some thought: Fusion lacks the cold-blooded political appeal usually needed to open the taps of the U.S. Treasury. Practical fusion power is at least 20 years away; the politicians who saw today will be long gone by harvest time. The moon program at least offered jaw-dropping milestones every few months: John Glenn's solo Earth orbit in 1962, Ed White's 1965 walk in space, the climax of Neil Armstrong's moon walk in 1969. All these gave glory-seeking politicians the opportunity to position before big TV audiences. Fusion presents no such opportunities.

Instead, its supporters are labeled as big spenders at a time when that reputation takes elections. With fusion facilities concentrated at just a few sites, congressman can't even promise constituents a lucrative dip into the pork barrel.

And controlled fusion offers no discernible military advantages. The Soviet Union pioneered in the field, and our scientists still cooperate closely with those in the Soviet program.

PAINTING BY SHEILA ROSE
To top it off, McCormack's bill came up for a vote not long after then-Energy Secretary James R. Schlesinger had scoffed at fusion research as a "scientific sandbox" and ordered his aides to top off more than half its allocations.

With such odds to overcome, fusion's political triumph was not won easily or conventionally. It had come a long way. Though Superpower U.S.A. leaves few technological bets completely uncovered, some options are explored only cautiously. Until the mid-Seventies fusion was one of the lightly covered bets. By 1968, when the overall nuclear budget was well into the billions, fusion received a mere $26.6 million—light rations given the high cost of research hardware.

But in April 1969 the USSR announced a major advance. Its Tokamak T-3 fusion reactor and a companion device known as the TM-3 had produced hotter denser and longer-lasting plasma than anything previously achieved. The Russians eager to collaborate with American scientists and engineers openly published their findings and invited foreigners to take a look. Tokamak T10, about three times as large as the T-3, was already under construction at a plant in Moscow.

Suddenly the U.S. fusion budget took off. It was $36 million in 1972 nearly double that by 1974—a brisk rate of growth considering the Nixon Administration's hatred of big research spending. By 1976 the fusion budget had risen nearly tenfold from the 1969 level. The Moscow Tokamak had done for American fusion what Spock had done for the Star Trek program.

In 1970 McCormack, a ten-year veteran of Washington state Senate, was elected to Congress by an upset vote. McCormack then forty-eight, had been a middle-level chemist at the Atomic Energy Commission's Hanford nuclear facility and he made a prescient bid for the unofficial role of Mr. Energy.

With the space program in decline, the then-House Science and Astronautics Committee was eager to carve new frontiers. Since no one else was much interested in energy in those pre-embargo days, Representative McCormack was made chairman of the committee's new Task Force on Energy—a rare honor for a freshman congressman. Back in Washington's Fourth Congressional District where the Hanford payroll puts the dinner on a lot of tables, McCormack's swift rise to a key energy post was noted with approval. Though the news from Moscow had sent our fusion budget soaring, Soviet achievements couldn't keep the political heat on. Coming to power on a pledge to slash government spending, the Carter Administration couldn't see that it made much difference whether practical fusion arrived in the year 2005 or in 2025. Keep it going, they told fusion planners, but there's no need to hurry—or to pour a lot of money into it.

With a budget then over $300 million a year, fusion researchers were not worried. They could live temporarily with a stretched out program. Research at Princeton, MIT and other American centers would soon prove the feasibility of fusion so clearly that the politicians would have to accept a speedup—or so they hoped.

But fiscal troubles were compelling the White House to squeeze ever harder on federal spending. Schlesinger who had chaired the old Atomic Energy Commission from 1971 to 1973 believed fusion was scientifically immature—it had been dealt with like. Many others he concluded that fusion could not stave off an energy crisis. Several key energy strategists feared that publicity about fusion's long-term wonders would breed complacency about a foreign oil cutoff. So Schlesinger put out the word. Cut $150 million to $200 million from the fusion budget.

Suddenly the fusion community was in a battle for survival. Their chosen weapon: a study by an impeccable panel of experts. It was told fusion might someday be used to trigger fusion, permitting bomb tests despite a nuclear ban.

Inertial confinement using lasers or particle beams might someday be used to trigger fusion. The Foster Report noted, fusion's support fusion needed. But it's backers contend that the study's findings have been widely credited with saving fusion.

At that time the director of energy research at the new Department of Energy was John M. Deutch a professor on leave from MIT. He asked John S. Foster Jr. to head an eight-member study group that is widely credited with saving fusion from Schlesinger's axe.

Foster vice-president for energy research and development at TRW Inc. held sterling credentials. A physicist he had spent most of his early career in nuclear research. He had been director of the Lawrence Livermore Laboratory from 1961 to 1965, then moved on to direct research and engineering at the Pentagon perhaps the most demanding managerial position in American research. Foster was known at TRW as a master of his profession, one of the few who could sort winners from losers early in the game with worthwhile advice.

The Foster Report—formally titled "Final Report of the Ad Hoc Experts Group on Fusion"—covered the field. But to Washington alchemists of report literature, a peculiar and highly influential form of politicking, the essential words were on the.
As the most vocal and visible advocate of the small-is-better school of fusion, a former rocket engineer recalls the frustrations in trying to persuade Uncle Sam not to think big.

Robert W. Bussard compares his bitter four-year battle with the federal fusion bureaucracy to a Robert Ludlum novel. It's more like the tale of David and Goliath. Bussard's small, independent company Inesco (International Nuclear Energy Systems Company), wants to build cheap, modular, "midget" fusion reactors that could be used up and thrown away like so many light bulbs. To do it, he's had to buck a fusion "establishment" that would prefer to spend its money on large, expensive machines. Bussard compares the mammoth "Main Line" reactors being developed at Princeton, M.I.T. and Oak Ridge to dirigibles-interesting research devices that are unlikely ever to produce commercial fusion power. But the Department of Energy (DOE) has said that Bussard's three-foot-high Riggatron won't fly.

The "throwaway" reactor—if it does work—certainly offers a tantalizing alternative. Since it is small, it can be plugged in to existing fossil-fuel plants, its modular design can answer a wide variety of specific needs. The most important thing is it could produce commercial fusion power as much as 20 years sooner than its Main Line counterparts, saving billions in development dollars. A portable, flexible high-energy neutron source, the Riggatron is capable of producing fusion power, fusion power, power power, oil from tar sands and nuclear fuel. In addition to all that, it could furnish estimated profits that boggle the mind. One "high-growth" model shows Riggatron-based fuel production outstripping Exxon by the year 2000.

How has this miracle technology managed to earn the enmity of fusion experts at DOE? It all began in 1977, when the Energy Research and Development Administration (ERDA) funded a $637,000 conceptual study of Bussard's Riggatron. The results, according to a DOE review panel, were dismally negative. Inesco protested that the panel was blatantly biased—and stacked with representatives from the Main Line labs who felt threatened by this new entry into the nuclear-fusion business. Indeed, lobbying by Main Line interests in Congress against a $
million appropriations amendment to support Riggatron research was so 'hysterical' that Representative Manuel Lujan, Jr., a New Mexico Republican, was moved to speculate that it was very well "orchestrated and most probably [had] an ulterior motive." Pressure from Congress, the Office of Management and Budget, and such luminaries as Edward Teller eventually did win the Riggatron a second panel review. But the results are hardly conclusive. The DOE is sticking to its previous no-go position, while Inesco is insisting that the concept was vindicated. "We've won," says Bussard.

As a former assistant director of the fusion program at the Atomic Energy Commission, Bussard knows his way around bureaucratic wrangling. He even holds a Ph.D in plasma physics from all of places, Princeton University. But he likes to think of himself primarily as an engineer. He was alternate division leader of the laser-fusion program at Los Alamos and head of R&D for a division of Xerox Corporation. Before that, he developed nuclear-propulsion systems for TRW Los Alamos Scientific Laboratory and Oak Ridge National Laboratory.

This background, above all, has positioned him against what he perceives as the slow-poke approach of the Main Line program. With an investment so huge and expensive, the Main Line fusion reactors can't afford to make mistakes. Bussard, however, believes in the kind of high-performance engineering that entails taking chances in pushing technology to its limits. They're learning a lot of interesting things in the Main Line program," he says. "but they aren't doing fusion. They're just watching plasma particles dance around." Dr. Bussard was interviewed for Omni by K C Cole.

Omni: Is there really a fusion "establishment" in the nation's capital that excludes all but the Main Line magnetic-fusion programs from getting funded?

Bussard: If you ask people in the government, they would categorically deny it. Obviously, because to admit it would be to agree that they are perpetrators of evil. So they say, "Of course not. Anyone with a good idea is welcome to come, and we will be glad to support them.'

Omni: But in reality?

Bussard: In reality things are quite complicated. Everything is funded by the Department of Energy establishment through Germantown, Maryland, which is the old AEC [Atomic Energy Commission]. Combine this with a small number of people who wander around the country contending that they should be given government research money to fund new and novel research solutions for fusion. In fact, one can show by known physics that most of these solutions don't work, which is why the DOE in its reasonable wisdom has chosen not to fund them. But we did not invent a new magical confinement scheme. All we did was to take the world standard confinement mechanism, the Tokamak, and shrink it in scale—a very promising approach, not a physics approach. The physics is perfectly sound. We don't want to fight unproven physics. We never did.

Omni: Then how do you explain the reaction you got from DOE and the Main Line fusion people?

Bussard: The reaction is simple. Suppose we're right. Suppose our machines do run as all nature tells me they will. By 1984, we will have five machines that run at power outputs of two hundred million watts for a couple of seconds. Our first commercial plant will be running in 1987. Twenty years sooner and at one tenth of the cost of the Main Line program. Now who in the national program can be enthusiastic about that? The Riggatron a swift development could in their view put careers on the line. Long-term personal futures are involved in this program. The bureaucracy in Washington, which has planned the main national program, is now faced with a curiosity of a twenty-year-sooner solution that it didn't invent. That doesn't make people feel good. It's human nature.

Omni: But the Riggatron is designed differently from a standard Tokamak. It's disposable or, more accurately recyclable. What is it?

Bussard: You can do either. You can either rebuild light bulbs or buy new ones. It's all a matter of cost. Do you recycle your light bulbs back to the GE light-bulb factory? No. You buy new light bulbs. Don't you? In this case, you transfer the light bulb away and buy a new one. We made a study that shows the cost is just about the same to make a new Riggatron from scratch as it is to recycle an old one.

Omni: That sounds pretty expensive. To have to plug in a new fusion reactor every fifteen or thirty days.

Bussard: Is it too expensive to plug in light bulbs?

Omni: But we are not talking about light bulbs. We are talking about fusion reactors.

Bussard: It's all a matter of looking at power levels and the costs of the power. The total energy output of Riggatron is so large and the cost of the machine so small that when you replace it, even if you threw the old one away and burned it in a mine shaft, it would cost you only 3 mils per kilowatt hour of electricity that would have been produced by that machine.

Omni: And is that substantially cheaper than what the big Tokamaks could produce?

Bussard: Yes. You can't throw away the big machines. They are long-term, thirty-year-lifetime machines, multibillion-dollar investments. They are so big that the down times are nine months or thereabouts when you have to take one of these big turkeys apart and rewind it.

Omni: The Riggatron is so much cheaper because you avoid two very expensive and complicated technologies—superconducting magnets and neutral beams, right?

Bussard: In part, but that is not the main advantage. Use of superconducting magnets forces the overall design of the machine to be fundamentally different, to be very large and very expensive. You cannot put a superconductor next to the fusion plasma, because the neutrons will overheat the superconductor and it will cease to be a superconductor. So you must have the superconductor behind shielding—heavy metals, stainless steel. But if you do that, you still have to breed tritium for the deuterium-fusion process. This is accomplished by capturing neutrons in lithium. But you can't put the lithium blanket outside, because the shield keeps the neutrons from getting outside. You have to put it inside. So the choice of superconductors requires a design in which you have a huge superconducting magnet filling a tremendous volume of space in order to have a little bit of fusion plasma contained inside two meters of shielding and a meter of lithium blanket.

It also makes the blanket an integral part of the plasma machine, which is a night mare to maintain. We have taken that whole geometry and inverted it. Put the blankets outside where they are cheap to build and maintain. Use water-cooled copper alloys for magnets and end up with a Riggatron a thousand times smaller and four thousand times cheaper than a superconducting machine.

Omni: If they cause so many problems, why do all the Main Line Tokamaks use superconductors?

Bussard: Because they have a nice scientific property. Once you have current flowing through them, it flows forever. Scientifically that is appealing. It is like believing in motherhood and believing that sunshine is good for you. It is nice if you have no losses, but it doesn't pay.

Omni: The other major difference between how the big Tokamaks work and... Bussard: How they work? Do they work?

Omni: Well, how they are designed to work?

Bussard: There is no machine that makes fusion on this planet. None. To this day no one has built a machine that sustains a controlled fusion reaction. The only proof that we can truly make fusion power has already been demonstrated by five nations, and those are the superpowers which have exploded thermonuclear bombs.

Omni: Do you think this surprises a lot of people?

Bussard: I think a lot of people think fusion is further along than it is because of the way the public-relations campaigns have been waged, at least by the government, implying that fusion is sort of here.

Omni: You've said that essentially what is being done in the Main Line program is not fusion, but watching plasma particles dance around. What did you mean by that?
DIVINE ALCHEMIST

The sublime is made visible in the art of Ernst Fuchs

BY THOMAS WEYR

Viennese painter Ernst Fuchs inhabits the house where the future began. Built in 1888, the elegant villa is a first break with the drab, imitative architecture of the nineteenth century; it marks the beginning of art nouveau in Vienna and the birth of modern architecture. To Fuchs, all artists live in the future. "They design possible future worlds. The cupolaed buildings of the Renaissance were copied from

Detail from Cherub Leaf on Amethyst (below), Cherub with Rainbow Wings (top)
the background of Raphael's and Mantegna's paintings. The frescoes of the Baroque show man in flight, breaking the bonds of gravity, space, and time. Goya and Leonardo drew flying machines.

Fuchs thinks that some of his own apocalyptic paintings have a quality of the New Age he sees coming. It will be a mixture of romanticism, faith, and exploration of the spiritual self. Like other members of the Viennese school, the artist fell early under the influence of Sigmund Freud. Whether Freud's theories...

Jesus Pantocrator (left); Cherub with Horns of Flame (top right) and The Tree of Eden.
Fuchs observes, "doesn't matter as much as his crucial discovery is the unconscious is a discrete realm that must be made visible.

In Fuchs's view the artistic imagination should turn to exploration of supernal events like the 'shining cloud' that bore Christ to heaven or the miracle of Fatima. Art is the original manna in the desert," Fuchs says. "It alone enables everyone, even those who do not believe, to taste the true values of life. We stand on the threshold of a new era, which is revealed to us through the prophetic quality of art."

Detail showing omnipresent cherub (above): Sphinx Callipygos, 1865 (right).
Scientists are of two minds about Julian Jaynes's heretical double-brain theory of human development.

Julian Jaynes's office should be right there. The den of Princeton's outlandish theorist must lie somewhere between that classroom on my left and the laboratory to my right where a woman in white is perched on a stool. I ask, but the young lab worker doesn't know where Jaynes is. What about the door behind her stool? A closet, she says.

I stand there for a moment and then, as I turn away, a door slightly ajar. A shaggy head with two bewildered eyes pokes out from behind it. They belong to Julian Jaynes, the astute and quiet professor who wants to rewrite most of human history. This sort of presumption from a professor incites articles from fellow scientists. Psychologist Ronald Hayes recently asserted, "The Code of Hammurabi and large portions of the Old Testament are products of people who today would be shuffled through mental institutions. Until about thirty-five hundred years ago the entire history of human activity— including the development of language, writing, mathematics, and art—could be attributed to people whose thought processes would be labeled psychotic by our contemporary standards. This is the shocking hypothesis of Julian Jaynes." Shocking, indeed!

The mixture of obscurity and surprise in the location of Jaynes's office is symbolic of the man and his singular career. A shattered academic reputation and one half of a scientific controversy lie in...
the wake of this psychologist who dared suggest that modern consciousness actually evolved from an earlier 'two-part mind' Jaynes brought modern psychological scrutiny and 20 years of meticulous research to bear on our distant ancestors. By comparing behavioral attitudes expressed in the Iliad, the Bible and other works of early civilizations, the Princeton theoretician formed the basis of his remarkable hypothesis.

Until about the year 2000 B.C., Jaynes postulates, humans did not possess consciousness as we know it. In ancient artifacts and writings we notice a striking absence of introspection or planning for the future, of putting human personal experience into narratives to clarify current thinking. These are all hallmarks of consciousness as Jaynes defines the term.

Ancient man, Jaynes surmises, lived with two minds, one dominated by the left side of the brain, the other by the right. The former defined man as he appeared in ancient literature: a creature of everyday life. The other half, the right brain was godlike and 'spoke' to the workaday part of the mind through auditory hallucinations. These hallucinations traveled from the right side of the brain across a nerve pathway known as the anterior commissure to the left side, where the voices were "heard", as if they were coming from outside the body. Hence the steady stream of references in ancient literature to people who "heer" the voices of gods or angels and allow themselves to be guided by them. Man had a dim awareness of himself and the world, but he was directed in larger matters by the voices, much in the way present day schizophrenics hear their own lucid-convincing voices.

In other words, Jaynes believes, our ancestors were uniformly schizophrenic and were not rationally conscious. Civilization was built by creatures who did not think.

In 1977 Jaynes published his theory in a book, The Origin of Consciousness in the Breakdown of the Bicameral Mind. The title was intentionally abstruse, and the book jacket was plain white with no illustrations. At Jaynes's insistence, the theory was wild enough that he didn't want some wiser book jacket sending him into the Von Daniken category of crackpots. He is serious and willing to be proved wrong. If Jaynes is right, his theory will rewrite many pages of history, psychology and linguistics. It may also suggest a future not now apparent to anyone.

A tall thin man with unruly sandy-colored hair and an oracular voice, Jaynes bids me enter and clear a space among the heaps of papers while he makes tea. His manner is friendly and humorous.

Amazed that he managed to sell more than 50,000 hardcover copies of his for bidding-looking book, the psychologist acknowledges that it is still in demand. He draws large numbers of interested, enthusiastic students to his lectures. Their professors, however, are more skeptical.

Classics scholar George Piginman of Caltech, when asked about Jaynes's scholarship, replied, "There is no scholarship."

Carl Duncan, a psychologist at Northwestern University, was caustic. "Jaynes is extremely clever to think up this thing. I only wish he would put that cleverness to more serviceable use."

Other negative reaction is less cerebral. Soon after the publication of his book Jaynes delivered a lecture at American University, in Washington, D.C. In the audience was Ronald Hayes, who apparently could not stomach Jaynes's speech. He grimaced, groaned, and slapped his hand to his forehead throughout the talk.

When Jaynes was finished, Hayes shot up and walked toward the door without waiting for the question-and-answer period, chomping on a cracker as he went. Jaynes was sitting on a couch as Hayes passed by and some crumbs apparently dropped on Jaynes. Some people in the audience interpreted this as a comment that Jaynes was a cracker.

Hayes says that he did not intentionally drop his cracker on Jaynes. "I have no recollection of this," he claimed, "but I would be happy to be told colorful! I'd be happy to dismiss this with a crumble and a crunch and then walk disdainfully away."

Jaynes's work has drawn some positive comment from scientists but they stop short of resounding endorsements. "The bold hypothesis of the bicameral mind is an intellectual shock to the reader," Stanford University psychologist Ernest Hilgard observes, "but he is forced to entertain it as a possibility. He is asked to think about matters he has never thought about before in contexts and relationships that are strikingly new."

"A work like this is a speculative creation, an achievement that generates ideas and stimulates thinking instead of making a final statement," argues Jerome Sanger, an author and a Yale University psychologist. Jaynes insists his 'bicameral man'—with two chambers in his mind—can account for many things in ancient history that are not easily explained any other way. The origins and oddities of the ancient religions with their multiple and talkative gods, or the fact that all those gods are now silent can be explained naturally even neurologically by Jaynes's two-part mind theory.

"Take away the voices, and unthinking people would still be capable of a great deal of normal, everyday behavior," Jaynes notes. After all, we drive the highways without thinking about each of our actions and play the piano without pondering each note. "Even the most intellectual activities are largely unconscious," Jaynes reminds us "as we know from the testimony of brilliant writers, artists, and scientists who say their ideas simply come to them, popping out of the unconscious."

One of the key bits of evidence Jaynes offers is the Iliad, a document he says was
and is s of inspection. Given our current subjectivity it is impossible for us to appreciate what it was like. When Agamemmon, king of men, robs Achilles of his mistress, it is a god who grasps Achilles by his yellow hair and warns him not to strike Agamemnon. It is a god who rises out of the gray sea and consoles him...a god who leads the armies into battle...who speaks to each soldier at the turning points who teaches Hector what he must do. It is the gods who start quarrels among men that really cause the war and it is the gods who plan the strategy of the war. In fact, gods take the place of consciousness. The beginnings of action are not in conscious plans, reasons, and motives; they are in the actions and speeches of the gods.

Hogwash counters Harvard psychologist Jerome Kagan. "I don't think you can use written documents like this as evidence," Kagan says. "Suppose only the work of Norman Mailer survived, and in five thousand years a scholar claims that he is going to tell about the consciousness of Western man from the way Mailer characters think. Imagine it only J.R.R. Tolkien survived! This is not adequate evidence."

Jaynes insists, though, that the bicameral mind lasted about 10,000 years and didn't end until the third millennium B.C. Society was then becoming extremely complex, populations were becoming very large, and writing had begun to supplant the authority of internal voices. The godly voices at first became somewhat confused and contradictory; then finally began to grow silent. Their loss, Jaynes feels, is mourned to this day especially by religious persons who wonder why God gave man so many miracles and apparitions in ancient times and then suddenly ceased.

Eventually humankind began to replace the lost voices with subjective narrating, judging introspective consciousness. The wonderful certainty of these voices gave way to the more ambiguous practices of prophecy and oracular divination which began during this period.

Jaynes also believes that consciousness is changing in our own time and that it may be possible literally to expand the 'mind-space' we have built up within ourselves. A full understanding of our bicameral heritage will enable us to teach our children how to think and perceive more powerfully.

Conservative scientists scoff. Some use John Leonard's analogy of scientists as policemen and Jaynes as a scientific criminal who must be intellectually disciplined. Arrested with laughter, Jaynes swings around his bright blue office chair. He is delighted by the cracker crumbs story. He might appreciate the fairness of scientific police but is probably tempted to picture them as Keystone Kops.

Jaynes is amused by criticism despite what it's done to him. This close-knit space might conceivably have been a large, airy office in a better building, had Jaynes held his tongue. Still, the controversy here seems framed of its blood: thorn of its thorny spine, a passive beast that can be sent from the room by merely changing the topic of conversation. Papers, books, and letters spill into piles on the floor competing for space with the little tribe of plants and the rusty hotplate that hold floor positions in back of his chair. Jaynes is wearing his professional tweedy sport coat, a yellow sweater and gray flannel pants.

Recalling the origin of his passion, he gazes impassively toward the window.

As a graduate student of psychology at Yale the young Jaynes became fascinated with the notion of consciousness. He decided that absolutely the only way to study the origins of consciousness was through evolution. Biological evolution had to have the answer. He began at the lowest level—plants and attempted to find out whether one particularly long-suffering mimosa plant could learn. It couldn't. I moved on to protozoa delicately turning paramecia in a T-maze engraved in wax on black Bakelite. If paramecia could learn, I felt, they had to be conscious. They weren't.

After other failures to find learning in the lower phyla I moved on to species with

CONTINUED ON PAGE 67

DENIM

For the man who doesn't have to try too hard.

He doesn't have to. Things come easy for the man who wears DENIM. Because a man feels better. A man feels cooler.

A whole new feeling in Cologne and After Shave.
FICTION

It was the ultimate gamble. The stakes? His life

BODY BALL

BY JOHN KEEFAUVER

Everything seems to be in order. Mr. Wellington reception. You may now reserve the Body Ball at your convenience.

"Very good. I'd like it on the seventeenth at eleven."

"It's available then, sir. If you care to read through the contract and sign if we can proceed for that night."

"That's not necessary. As long as the major points are the way we agreed. I'll sign them as agreed.* If you win at Body Ball, you collect one million. If you lose, all your financial assets go to the syndicate, and you're as agreed.*"

"Never mind. I know the second can of it very well."

"Of course."

"That's the only thing that concerns me, frankly—the disposal of the body."

"There is absolutely nothing to worry about on that score or it will be disposed of per our agreement. We stand on our record, and I'm sure you are aware that we have been in business long enough to have an excellent one. Wellington noticed."

"Well aware."

As precisely given a clock on the evening of the seventeenth, Wescott Wellington pulled his Mercedes to the curb in front of one of a number of undistinguished row houses and turned it over to an attendant who had been waiting there. As he man drove the car off, Wellington rang a doorbell at the house.

The door opened up automatically and he was ushered inside by a voice coming from a wall speaker:

"Welcome to Body Ball! You may hang your coat on the rack to your right, sir, and then enter the room directly in front of you."

Wellington was surprised as he walked into the room. The Body Ball machine was gigantic. He'd known it would be large, of course, but had not imagined it as stretching nearly well to wall and being ten to twelve meters wide.

They must have torn down almost all the walls in the house to make the room large enough for it. On the other hand, aside from its size, nothing about it was different from the hundreds of pinball machines he'd seen for almost as long as he could remember—nothing different on the outside, that is, the inside, of course, the part immediately below the playing surface was far different—deep enough to hold a body.

The giant pinball machine was the only thing in the room except for a chair in front of it and a few steps that led up to its lower end. As for the room, around the upper meter or so ran a strip of tinted one-way glass behind which he'd been told there would be spectators, both official for verification and some simply there to enjoy the show.

He eased himself into the chair slowly. His age and his paunch made it difficult for him, so as he played the machine of course, but otherwise he was a healthy man. Deeply tanned, impeccably dressed, gray hair darkened, fingers maintained, and all ready...
feeling an anticipation, a thrill that he had thought he had lost forever, he smiled when an attendant approached.

"May I be of service, Mr. Wellington?"

"Anything to drink?"

"No, thank you. The Body Ball is ready for your use."

"Yes, sir. May I help you with it?"

Wellington got up and slowly walked to the giant pinball machine and climbed the steps down to its lower end. On the top step he bent and went through a small doorway into the machine as the attendant hurried up the stairs behind him.

Inside, still in a crouched position because of the glass above him, a pane that extended over the playing area, he edged onto a bucket seat that was attached to a wheeled scooter. The back of the seat rose to head level and was resting against the machine's giant plunger.

"Now sir, if you will permit me—"

The attendant crouched beside him, now buckled and locked the seat belt carefully, and then did the same to bolts at his ankles and wrists so that besides being made safe against being thrown from the scooter, he was unable to guide it by using his limbs outside it. Although he was allowed to use all the body English he was able to muster.

"There you are, sir. All ready to go."

"Thank you."

"As soon as I get out and close the door just call when you're ready and I'll send you on your way."

"Right. It will be a moment; I want to relax some first."

"Of course, sir. If I can be of more service, just give me a call. I'm here to help."

Thank you.

As the attendant left, Wellington mused with a faint smile that it was only proper that he should be offered "service" at this time, the pinnacle of his career God knows, he'd earned it. All of it. Service came with the good life, the rich life. The gambling life. Millions won, millions spent. He'd had it all. He'd been everywhere, done everything, bought everything. And all because of dice cards, horses, the wheel you name it. He'd always been a winner. Always. And he didn't have the slightest idea why. He had no system no nothing. It was un­canny. He'd been barred from many a place through the years because of his continual winning. He'd had to disguise himself use a phony name.

He'd resolved having to do that at first—the subterfuge—but gradually he had learned to look forward to it. Because when you won almost consistently gambling became there was no other word for it—just plain boring. To him anyway and getting into the places he'd been barred from was a challenge and knocked the boredom for a while. Boredom, in fact, was his greatest problem now and he might even have gone into some other line of work except for the style of living he'd become accustomed to and boring or not gambling was his life.

When he heard of Body Ball he was attracted immediately thinking it impossible to be bored by the game since he could never be certain that he was going to win—in the long run that is. One loss when playing Body Ball was the final one. There was absolutely no chance to recoup to win. He'd be dead.

He knew the backers—casino people. They were reliable. He applied to play and as he expected was quickly accepted not only because they thought he had enough money to make it worthwhile while he should lose but far more important because he was a winner and because casino owners wanted to get rid of winners—legally. That was why they had invented the game. He suspected, with its extreme pen­siveness for losing.

But why would winners play Body Ball in the face of such a penalty? Well, he didn't know what motivated the rest of them, but he knew about himself. He was here for the ultimate thrill the greatest challenge with absolutely no possibility of boredom. One loss ended it if he lost his life.

He had practiced—a joke. He hadn't even liked pinball when he was a kid. It was a game played by addicted robots—numbskulls, in his opinion. And of course there had been no money in it. But during the last few days he had wearily played dozens of times always winning of course. Even so, he suspected that the correlation between playing ordinary pinball machines and playing Body Ball was infinitesimally slight, it existed at all.

Now he would find out for sure.

"Taking a deep breath he called out to the
attendant that he was ready to start

Very good sir

He left the scooter move as the plunger behind him was drawn back by a powered device. Slowly he rolled backward until the plunger was released abruptly and he was shot up an inclined corridor at stomach-jolting speed.

Ahead of him rising vertically at the higher end of the machine, a blinding array of colored lights began to flash spasmodically on a huge board. In the board's upper center brilliant green lights spelled out the word "deadly," and under the lights was a clock. Activated by the plunger's release, the clock's second hand was already moving. If he stayed on the playing area four minutes—one minute for each letter in the word—his score would be automatically calculated at the end of that period of time by a device triggered by the ticking clock, and he would win his million dollars.

If on the other hand, he failed to stay on the playing area four minutes and dropped through the open slot, a device triggered by his falling body promptly slid the metal covering over the slot and him. With the covering closed and with the rest of the lower part of the machine equally sealed—the part that is into which he had fallen—cyanide pellets were dropped into acid, releasing killing gas.

His speed gradually lessened as he approached the top of the playing area. Even so, the speed was great enough to kill him harshly when the scooter hit a padded obstacle shortly after he rounded the top. The scooter, which had an inflated tire like him, bounced back with a jerk to the top of the playing area, and from here he would begin his all-too-speedy descent toward the exit slot at the bottom.

Just below him now were two raised parallel corridors. Hurting backward, he went through one of them, bouncing off its sides and triggering a barrage of blinding lights and a deafening cacophony of bells and buzzers on the vertical board and playing area (something he was to learn that happened every time he struck anything!).

Coming out of the corridor at a slight angle, he crashed into a giant mushroom-shaped protrusion that with its springy edge spun him off to another mushroom and he smashed against a rectangle-shaped padded obstacle near the left side of the playing area. From here he dropped alarmingly until he crashed into a flipper about halfway down the machine. The flipper activated on contact, shot him to the rear side of the machine toward the top where he crashed into another mushroom which smashed him into the bottom of one of the raised corridors.

From here he rolled straight down the center of the machine toward the exit slot, skimming past two mushrooms and not even getting close to a flipper even though he savagely yanked at the arms of the scooter with his belled wrists. He zipped past two padded obstacles another mushroom, and another flipper gaining speed all the time. Ahead were two more raised parallel corridors directly in front of the slot, below the corridors he saw there were only two flippers that could stop him from going through the hole.

With desperate Tanks of his wrists and body against the belts, he was able to jerk the scooter to the left enough to smash against the top of one of the corridors, which sent him back up the machine about three meters. Right back down toward one of the corridors he sped though, zipping through it cleanly and setting off an even more horrendous barrage of lights and noise. But again, using savage jerks, he was able to hit the last flipper before the exit slot at the far side of the machine, where he hit another triangle-shaped padded obstacle with such force that he thought his head would be thrown from his body. Rolling backward he crashed viciously into another mushroom. This one shot him against another tire-rimmed obstacle. Then he bounced off it and landed against another flipper which smashed him against the side of the rubber-rimmed machine, with such force this time that his head crashed into the back of the scooter, slamming him into a rubberized fingerlike obstacle.

And then he was speeding down again. A flipper hit and he was moving crossways, and then up again. He was spun backward and came up heavily against a mushroom. Then he caromed off into another Lights exploding before his eyes. Noise hammering him. Body spinning./mushed and a decade of the Thuds Constabula Bese into gut-wristed ankles Up Down Across Down Up Across Up.

He was near the top of the machine when the covering slowly slid over the exit slot. He had won—again.

He felt the old boredom within days after he collected his million. And it wasn't long before it was unbearable again worse because now having won the ultimate gamble, what was left? It was impossible for him to really win. It seemed—win freedom from boredom. Out? Quit gambling? That thought itself was depressing enough to lead finally to thoughts of suicide. Gambling was his life.

Was death better than boredom? He was beginning to think so.

As he was getting ready for bed one night, he gloomily came to the conclusion that it was, and he decided to play Body Ball again and again and again until he must lose.

It seemed that he had no sooner got to sleep, than he woke up with a start his boredom gone and his whole body tingling with life.

He'd bet the Body Ball owners—with suitable odds, of course—that the cyanide pellets wouldn't drop into the pail of acid. How could he lose? [Q]
APERTURES
BY GEOFFREY GOLSON

A gallery of readers’ submissions to our Phenomena Photo Contest reflects prizewinning visions of the unusual. The color and brilliance of vitamin C (below) or an exploding balloon (right) portray the scope of nearly 6,000 accomplished entries from as far away as India, New Zealand, and Peru.
Trapped in 1/750,000th of a second, glitter dust sparkles within a popped balloon (previous page). Robert H. Miller, of Rochester, Michigan, captured this image with a Pentax ME camera while the glitter still retained the balloon's shape. Magnified by a factor of 20, recrystallized vitamin C (page 78) mirrors the odd symmetry of photomicrography. Suzanne Groed, of Upper Arlington, Ohio, matched a Hertz Ortholux microscope to a Nikon MD5 and caught the starting pattern of the vitamin. A similar technique was used by Terry K. Coo, of Huntington Beach, California, to turn potassium sodium tartrate (below) into a sizzling fowl of colors. Giovanni Santate, of Detroit, cross-polarized the point of a plastic triangle until it took on rainbowlike hues (also below). Raymond E. Schenker, of Garden City Park, New York, used ordinary ice cubes to create an explosion of frozen fireworks (right). Schenker set the stage for his glacial waterfall with a black background, fluorescent and incandescent lamps. A Nikon FTN and Kodachrome 64 film recorded the image before it was lost to a quick melt.
The 1980 Nobel Prize for physics was awarded to James W. Cronin of the University of Chicago, and Val L. Fitch of Princeton University. You may have read of this announcement this past October in your local newspaper. Then again, if you were one of our original Omni readers, you would have known the identity of the winners over two years ago. We announced in October 1978, in our very first issue, that Cronin and Fitch would become laureates.

Writer William K. Stuckey in his article "Nobel Prize" that month predicted that the frontrunners for the Nobel in physics would be Arno Penzias and Robert W. Wilson. They did in fact win in 1978. Stuckey went on to say that next in line would be Steven Weinberg and the team of Cronin and Fitch. Weinberg won in 1979. And now, Cronin and Fitch, who have demonstrated that subatomic particles do not always behave in a symmetrical manner, have been tapped by Stockholm. Stuckey does not forgive his predictions to science, however. On May 13, 1980, he wrote me a letter boldly picking the presidential nominees. Stuckey predicted the Republicans would nominate a President/Vice Presidential ticket of Howard Baker and Alexander Haig, who would be pitted against the Democratic duo of Fritz Mondale and Georgia Senator Sam Nunn.

Good news for Ham, the space chimp. In our November 1980 issue we reported that America's first primate in space (he was blasted into suborbital flight on February 1, 1961) was living a life that appeared to be an unpleasant existence at Washington, D.C.'s National Zoo.

He has now been moved to the North Carolina Zoological Park in Asheboro. A state-run zoo that specializes in rehabilitating chimps that have been raised by themselves. Ham, now 23 years old, has spent the last 17 years of his life alone in a cage. Such chimps often have problems communicating with and responding to other chimps. The plan at Asheboro is to let Ham loose in a new half-acre outdoor habitat (complete with a running stream) to live with their present community of six chimpanzees.

At this writing, Ham is still being kept in a single cage, but zoo keepers are putting chimps in the cage next to him so he can get used to them. Ham, according to zoo spokesperson Marcia Constantino, is doing very well so far. She describes him as "still a magnificent specimen and a very nice animal."

The National Zoo has officially loaned Ham to the zoological park for breeding purposes. But our first goal," says Constantino, "is to see that Ham becomes a real live chimpanzee again.

When computer scientist David Hall arrives at Stanford Research Institute International to do consulting work, his colleagues there are no longer shocked to see him wearing a skirt. Several years ago, while attending a yoga conference in India, Hall tried on a skirtlike wrap called a lungi, he's been hooked ever since.

David Hall: Mixing skirts with computers.

Hall now finds wearing trousers to be illogical, restrictive, and unnatural. It is his goal to persuade more men to switch to skirts, especially since women now have society's sanction to wear pants.

As part of his campaign, the scientist has worked out a computer program which includes a "Boolean Truth Table" and a binary classification of all forms of leg clothing, that he claims somehow shows the logic of his dress code. He based his program on three basic assumptions, he says. "We are all born naked and clothing is a form of manmade technology. Men and women have two legs and anatomical differences (at least when it comes to skirts) are minor, and the laws of morphology can prove that when it comes to clothing there is no anatomical reason why men should wear pants only.

Dressing robots is another of Hall's concerns. As robots become used in domestic and office situations, they'll need android-like clothing to protect them from scuffs, scratches, and dust. Skirts are by far the best design solution.
States by the early twenty-first century leaving fossil-fuel plants as backups.

But there is more. Instead of wasting petroleum and coal to extract oil from sand and small reactors can be flown to remote locations to produce needed steam.

Or, what about star power under the hood? Inesco, in conjunction with Utton Industries, studied the possibility of using a small fusion reactor to produce ethyl alcohol from sugar cane. Bypassing the need for fossil fuel, the small reactor would reduce the cost of ethyl alcohol to anywhere from 33 cents to 36 cents per gallon. Cane fields in Hawaii and Mexico could be converted to transforming solar-grown cane into fuel. Using Utton's experience of mounting methanol plants on barges, we could float small reactors to sugar fields anywhere. One hundred ninety-six such plants would produce enough ethyl alcohol to run every car in the United States. Bussard says it would take 12 years to construct these plants at a cost of $240 million apiece. "But we would have eliminated the fuel problem for cars," he notes.

At KMS Fusion Inc. in Ann Arbor, Michigan, the emphasis is on laser fusion. Through a system of mirrors and lenses, KMS bounces a beam from a large infrared laser at a fusion fuel pellet the size of a speck of dust. In 1974 KMS was the first organization in the world to produce neutrons by imploding a fuel pellet with a high-power laser: achieving the first laboratory-scale inertial-fusion reaction.

KMS Fusion has developed microminiature pellets of fusion fuel that it hopes will be mass produced for laser-fusion reactors. The laser fusionists are also experimenting with high-intensity beams capable of powering a commercial reactor.

A KMS subsidiary, Radyn, Inc., has competed some of the company's early work on generating hydrogen and methane from fusion radiation. Henry Gomborg, president of Radyn, says, "Fusion is almost a pure radiation source. Virtually all of its energy comes out as high-speed neutrons. If such a pure, high-intensity source is not converted into another storable form it will be converted to heat. The trick is to find processes in which radiation and heat can work symbiotically."

Should Radyn master the trick, Jules Verne's prediction in The Mysterious Island that water may be the coal of the future might come true. Most fusionists agree that a fusion economy would usher in an age of limitless hydrogen fuel and technological spinoffs that will spur American industry to a commercial rebirth.

Most fusionists agree that a fusion economy would usher in an age of limitless hydrogen fuel and technological spinoffs that will spur American industry to a commercial rebirth.

Inertial fusion, says Alan Kolb, a prominent physicist and president of Maxwell Laboratories in San Diego, "we've been able to develop impact welding. With this method, you can weld five to ten wall thicknesses at a shot, while conventional welding deals with only one wall thickness."

In the future fusion could turn the chemical industry upside down. Using the high-temperature fusion plasma, chemists could fake low-level carbon or hydrogen combinations—for example, carbon dioxide—and forge the molecular structure desired, eradicating the polluting residue of today's complex hydrocarbon processing. The implications of this, Sauber claims, are that we wouldn't have pollution, but we would have vastly improved purer materials. With fusion, the chemical industry would experience a total rebirth.

For metallurgists, concerned with the scarcity of strategic mineral resources, fusion extends a promise of ecologically sound scrapyards. The fusion method for recycling metals and urban waste was proposed in 1969 by William C. Gough and Bernard J. Eastland. Their method called the fusion torch, would use the reactions high temperature to convert metals and waste into their component elements.
synaptic nervous systems—flatworms, earthworms, fish and reptiles—which could indeed teach all on the naive assumption that I was chronicling the grand evolution of consciousness. Ridiculous!

Jaynes was so dedicated he eventually moved into the basement laboratory at Yale and set to work. Embarrassed faculty members would occasionally walk in on the young scientist when he was wearing a tee shirt and had shaving cream on his face.

Jaynes looked many hermitages, as he called them, shutting out all human contact while holing up somewhere to read, think, and do nothing else. He could go on his hermitages without physically removing himself from that basement room one Yale colleague recalled. He would announce that he was on a hermitage and then simply not talk to anyone. He never greeted them just sat in a chair and think. When we asked what he was thinking of, he would get a sickly smile on his face and say nothing.

Even after all his work at Yale Jaynes was still confused about consciousness and began to realize that everyone else’s psychology was just as confused. There was no agreement on a definition of it. Notions of awareness learning and all manner of perception were mixed into the concept. Jaynes eventually decided to strike off on his own. He refused to accept the Ph D. for which he had finished all the requirements.

"A ridiculous useless badge," he says. "My brains are my credentials." He simply left the country going to England where he lived on meager savings while he read, thought and walked mile after mile through the hedgerows and quilted pastures.

As Jaynes settles into his office chair after getting a second cup of tea, he talks of the way the theory finally began to gel. Lighting a small cigar and letting the match drop among the debris on the floor he says, "When I came from England to Princeton sixteen years ago everyone was still confused about the subject. So I started fresh by trying to trace the history of the mind-body dualism. I traced it back until it disappeared. And where did it disappear? In the Iliad. Dualism is prominent in Plato and in the Pythagoreans, but not in the Iliad."

Jaynes then started studying the words for mind in the Iliad. Psyche did not mean mind as it does today but rather life substance such as blood or breath. Thymos which later came to mean emotional soul in the Iliad means only motion or agitation. Most important is the word nous which later came to mean conscious mind. In the Iliad it merely means field of vision. Jaynes stops speaking for a moment and leans back in his chair. "Then it just suddenly occurred to me one day that since they did not have words for consciousness maybe they were not conscious! Could this be the origin of the consciousness that I’ve been seeking so long in evolution?"

No way language experts state pointing out that the English word mind has no real equivalent in contemporary Italian either. Not finding it in 3000 B C is less exciting when you realize it’s not in present day Italian, says a prominent philosopher and historian of science.

The instant he made his breakthrough Jaynes knew it would be mocked, but he couldn’t shake his conviction that he’d found the key. "I knew everybody would say I was insane. I had a feeling of weakness, even though I saw how everything clicked together. I realized that the problem of consciousness had stumbled so many people because it wasn’t in evolution, it was in human culture.

Once Jaynes had put together the outlines of his theory, I had to do a lot of study to bring all this within the realm of the possible in my mind. I had the same questions everyone else had. It seemed impossible.

The pyramids built by unconscious people? Unheard of!"

He began to experiment. He could make some predictions about things in the Old Testament. The older parts of the book should be bicultural, that is there should be an absence of mind words and there should be the hearing of voices. The newer parts of the book should be conscious with the writers making introspections, plans, and so on. And there should be a loss of the

20 SECONDS OF ALLSOP 3 COULD HAVE KEPT THESE TAPES ALIVE.

How many times have you seen your favorite tape eaten up—mangled beyond repair? And you probably cursed the tape and your cassette player.

No more. Now you can attack the primary cause of tape damage with a revolutionary new kind of non-abrasive audio cassette deck cleaner called ALLSOP 3.

ALLSOP 3 thoroughly removes oxides and other residue from your cassette deck’s head, capstan and pinch roller—the parts responsible for top sound quality and smooth tape flow. When pollutants coat these parts, poor performance and tape damage result.

Simply moisten the ALLSOP 3 cleaning cassette with special-formula ALLSOP 3 cleaning solution. Insert into your deck as you would a regular tape. Press the "play" button and two separate non-abrasive felt pads go to work, one cleaning the capstan and pinch roller, the other the head with a patented cleaning action.

20 to 40 seconds is all it takes to keep your cassette components clean. 20 to 40 seconds that could mean life—or death—to your tapes.

LOOK FOR THE ALLSOP 3 DEMONSTRATION WHEREVER AUDIO PRODUCTS ARE SOLD
voices of the gods. I was right."

Jaynes carried on other more unorthodox experiments including the time he invented a little test of right- and left-hemisphere dominance that involved looking at two tiny cartoons and telling which face seemed happier. Jaynes designed the cartoons so that the expression varied depending on which side of the brain was dominant in perception. He cooked up the thing one midnight and was so anxious to experiment that he wandered the halls of his building looking for someone to try it on. No one else was working at midnight, and so he set off for the nearest bar. He found only one drinker and the bartender. They thought I was crazy, Jaynes says, "but they went along with me. The test was successful and has since backed Jaynes's two-minded view in something over 80 percent of those tested.

A neurological experiment Jaynes has tried to get under way but which is technically very difficult involves testing the brain wave activity of schizophrenics at the moment they experience hallucinations. Jaynes's theory predicts that the right hemisphere should bear more of the activity during hallucination. If the voices heard by hallucinating schizophrenics are generated internally in the right side of the brain and are perceived by the left side, the physical basis for Jaynes's theory will receive a tremendous boost.

Such a test might strengthen the faint praise even Jaynes's strongest admirers offer "Julian Jaynes." says a prominent psychologist: "Julian Jaynes is a serious, committed, brilliant, sensitive person and he fell in love with ideas. Serious scholars have love affairs with ideas like this. Who knows? Maybe he's even right. Maybe there is a germ of truth in what he's saying."

If what Jaynes is saying turns out to be true, it will have an enormous impact on science, religion, and the future of the human mind. The theory destroys the foundations of religion. Belief is unmasked as delusion or hallucination. Though the theory says nothing about the existence of God, it does blow away in a single blast all the books, idols, and rituals passed down from ancient times.

As for the mind, Jaynes believes we are in transition from the bicameral consciousness that built religion to the rational consciousness that is science. With science we must accept a degree of uncertainty about ourselves and the world and about knowledge. We cannot revert to desperate yearnings for holy voices which those who embrace new cults and flock to mullahs are doing today.

Jaynes adds that science itself for all its pomp of factuality is not unlike some of the more easily disregarded outbreaks of pseudoreligion. In this period of transition from its religious foundation science often shares with a hundred other irrationalisms the nostalgia for the Final Answer the One Truth the Single Cause. In the frustrations and sweat of laboratories science feels the same temptations to swarm into sects. And all my work is a part of the transitional period after the breakdown of the bicameral mind.

As Jaynes gets up to go to a faculty party it is nearly sunset. Though he does join with the faculty in events at the university, Jaynes is virtually not a part of it anymore. From the rank of assistant professor not far from tenure he has now been demoted to part-time lecturer with a salary of $4,000 a year less than a graduate student makes.

Whether he is a prophet or not, Jaynes is certainly without honor among the academicians at Princeton. But however successful Jaynes and his controversial theory end up, he has at least accomplished one core task that he set out to do. Jaynes once said that psychology as a science should not ape physics in its mathematics or its certainties. Physical discoveries may be called breakthroughs, he said, but psychology's correlative verb should be break out. Whenever some mode of thinking or some theory throws a net around the thinking of psychologists, the time will come when that envelope is suddenly seen to be a subjective barrier a part of the psychological dynamics of the scientist himself.

From traditional psychology from rat labs and blind mazes to the quicksand of verbal abuse about consciousness. Julian Jaynes has broken out...
With our approach, we will be able to test whether fusion actually works or not before anyone else can. If we find it doesn't work, the world's fusion programs will be in deep, deep trouble.

Omni: In other words, when the DOE review panel said you were pushing technology beyond the state of the art, it didn't know what the state of the art was?
Bussard: The panelists didn't have any idea what the state of the art was. If you look at their backgrounds almost without exception they have never built anything of any kind at any time.

Omni: Didn't they say for example that the first wall in your Tokamak wouldn't melt?
Bussard: That was nonsense. Total nonsense. It was said by people who have no experience in building heat-transfer systems that conduct high-heat flows. The kindest thing that you can say about those on the first panel is that they were woefully ignorant of the engineering technology of high-power machinery. That is the kindest thing. For the second review we had an honest, unbiased, and non-bought-and-paid-for reviewer in the form of a gentleman from NASA Ames. This man has built a high-temperature, water-cooled, constructed with the Ames Jupiter arc reentry heating test facility—for the shuttle. It's a tremendous machine. It has run three years without a failure. The heat fluxes that he can take on that are on the first wall are three times the highest heat fluxes that we have ever seen required for any version of Riggatron reactors. And he sat on the panel and said that heat transfer is no problem.

Omni: Then can we review basically what happened? You received more than six hundred thirty-seven thousand dollars from ERDA for a conceptual study, after which it was downhill all the way.
Bussard: No. It was uphill. It was progress. As far as we were concerned. For the first time we had money to explore the engineering parameters that bounded the physics requirements. As a result of that study I was 90 percent confident it would work.

Omni: But something happened.
Bussard: Yes. It did. The scientific community aligned itself against us. In the spring of 1976 a board was convened to evaluate Riggatron's feasibility. The panel met and produced a report. The report was so asinine that Innesco wrote a twenty-page rebuttal. The rebuttal got the panel to reconvene and consider it again. They came out with essentially the same kind of idiotic statements. Then they went downtown to higher levels of DOE and made presentations condemning the Riggatron concept. The Office of Management and Budget was brought in to hear those presentations, ostensibly to get them to say this was a bad idea. The OMB got so troubled and unhappy it called me right away and said, 'What the hell is going on? We hear this thing won't work. That machine will break.' It was the first I'd heard of such a meeting.

Eventually OMB called its own meeting of OER (Office of Energy Research), OFEI (Office of Fusion Energy), and OMB. And OMB went away completely with a mind that the entire DOE review report was discredited. Totally and fairly discredited.

Omni: Was the meeting that someone described as a shootout?
Bussard: Yes. We utterly destroyed them. Technically. We were right and they were wrong. Congressman Mike McCormack (of Washington) asked the people at DOE to arrange another review committee from outside of the system. The second group was headed by honest guys with track records of some stature. Their report showed conclusively by all known physics that the machine will ignite.

Omni: What was DOE's reaction to this second panel review?
Bussard: They wanted devilishly to ignore it. The Office of Energy Research finally came out with a report around the end of November 1979. If you read the body of the report and the technical analysis you will find that it says what I said earlier. But it has a one-page executive summary dictated largely as a cautionary note to upper management at DOE. It says, in effect, 'Well, it's high-risk, and we may work and it may not. But in any event it should be viewed in the context of the larger program. Meaningless. So now they can ignore it. The report was never distributed. You don't want to distribute a
report like that right? You want to distribute only the executive summary. So they did.

Omni: Could one problem with acceptance of the Riggatron fusion reactor be that it goes totally against the long-life thinking that goes on in the utilities industry?

Bussard: It doesn't go against it as if we took a ninety-degree turn in the road and said there's another way around a certain mountain. You don't have to climb straight over it you can go around the other side.

Omni: You've said that the utilities don't like the large Tokomak approach because they are too complex and too expensive. The Riggatron is appealing because it's simple and replaceable. How does that work?

Bussard: Think of a string of light bulbs. You want to have five lights burning at all times. You build a string seven bulbs long and you light five of them. When one burns out, you turn on the sixth and you have no downtime and replace the burned-out bulb.

Omni: So you can make power for utilities. What else can Riggatron do?

Bussard: That all has to do with producing cheap steam. The Riggatron is really nothing but a steam generator. When you compare the cost of steam from natural gas-fired plants or coal-fired plants, this thing produces steam at one third the cost. So we make such steam and with a gadget that's so small it can be shipped in an airplane to the furthest region. Then we pipe steam at three hundred fifteen degrees centigrade down one hundred eighty meters to the sand and dislodge the steam.

Omni: All this and you make ethanol, too.

Bussard: That's a different use of the same steam. It's just the fact that the steam is so cheap and comes from an inexhaustible source.

I can also tell you about breeding nuclear fuel. The world is building reactors whether we are or not. There are hundreds of them overseas. They are being built in France, like potato chips. All will need nuclear fuel. Riggatrons are probably the world's best breeders of commercial-grade fuel. It is completely proliferation-proof fuel. You can't make a bomb out of it because it is isotopically all mixed up. And there's an infinite supply as long as you have thorium and there is twice as much thorium as there is uranium 238.

And last but not least because it is such a copious neutron producer Riggatron light bulbs can take fission waste products from reactors or from hybrid blankets and put fission waste product blankets around the machine. Then by neutron transmutation you can burn up the waste so that they no longer constitute a nuclear-waste disposal problem.

Omni: Is this how you come up with these incredible profit projections?

Bussard: The profit figures come from almost anything this machine can be applied to. It turns out to be the same incredible profit margin because the energy cost for any of them is so small.
Ralph Hewitson's Thanatoscope was the ultimate product of that strange man's obsession with death. Thanatology is, of course, the study of dying, and Hewitson's machine was intended to enable us to see, and ideally to 'trap' Death itself. Or himself. Ralph Hewitson always took it very personally that he or anyone else should have to die.

No doubt all of us go through this stage of horror and alarm when we are children. Then we live the trauma away in the back of our mind. We look it up in the mental lumber room, and it creeps out again only in our last days. Sometimes it remains as offensive as ever, but increasingly nowadays — thanks to the Thanatology Foundation's centers across the land and the reinterpretation of dying as an altered state of consciousness — it is transferred into a friend, an intimate part of oneself, the keystone of the arch of life. Hewitson, however, kept intact the old animist vision of some invisible thief of life in the Thanatoscope — his death-watch device — was to be the moving camera, and cage, that 'surrounded Death himself.'

Two: some scientific testing of death has been conducted in the centers in addition to the psychological studies and therapies — but only in the sense of weighing the body before and after death to see whether any 'weightless' dies occurs, as of a departing soul or using aura photography to try to record this departure on film. None of these fringe investigations have ever tried to demonstrate the converse occurrence — the arrival of Death as an active force.

Hewitson was a tall, black-haired man with a slight permanent stoop as if the newer twisted doorways to be quite high enough to let him through. I wonder whether Death's doorway will let me pass when my time comes? he said to me one day, darkly humorous. "Or will I get stuck in it? hallway in, hallway out? You know, I've been thinking that zombies could simply be people who get stuck in that door. Their conscious mind has gone through, but the automatic mind gets left on our side of it, running this body mechanically. "You mean the autonomic nervous system don't you, Ralph?"

Do I? Do I?"

I'd come to the Sixth Street Thanatology Center only three months earlier from Neo Theology College, after rapping in Death-Of-God counseling, and it was something of a shock for me to find someone who — if he really didn't believe in God — nevertheless firmly espoused the doctrine of death incarnate. But I had taken a liking to this black priest who vanquished his obsession with a death of peace.

No doubt this was the way he performed in his own counseling of this dying — he made death seem something of a lark. It was a Marx brothers' comedy. That approach could probably work wonders with some people. I've met them. They have to be
contemplative about their demise. They think that it is sanctoralious. Whereas with other people who are still scared—well, a joke could be a fine nerve tonic

Of course, to Ralph deep down this was no joking matter. I was being given a guided tour of his machine up in his office on the fourth floor of the building. It was a pleasant sunny room with a gift-framed medieval Dance of Death on one wall and, by contrast, another large color photograph of the Taj Mahal. The machine which took up most of the space floor space was the exclusive middle between honor and blissful peace. Ralph had however included it a way not of greeting death with alarm or with joy but ofDamned well capturing him.

There was a waterbed—umbrella, unplanned with mediums—settled within a deliberately freighted Faraday cage which could block out any kind of electromagnetic radiation or isolate any radiation arising within it. Encircling this cage were polarizable glass walls that could be rendered opaque—turned into an infinite internal mirror. Various tiny cameras and mirrors were mounted within in silver rods and outside the glass walls were fluorescent screens, an electronic scanner and a kind of hooded periscope. Also within were small highly sensitive (to one part in a billion) chemical sniffers alert to the pheromones of death, the complex chemical released in minute traces by the dying body, to which we sometimes call corpse sweat. This chemical is akin to the sexual attractor pheromones released by humans and other creatures, and personally I think it is a normal evolutionary by-product—a warning signal to others in the vicinity.

Most deaths in ancient times would have been violent in one way or another and spelled trouble. Hewston of course thought differently. He had the notion of this molecule as an attractor signal too. It was something that Death would small and descend on like a mating moth. The death agonies couldn’t happen until Death had been called. This accounts for certain overly protracted deaths: the bodies of such people simply couldn’t produce enough of the pheromone.

True to form, Hewston had managed to get tiny amounts of this corpse sweat synthesized and had built a number of prototype death traps designed to release quantities of it and to snap shut on whatever vectored upon the molecule—without success. So he concluded that a dying body actually needed to be there.

Despite his qualms at taking life—which he regarded as sacrificing to Death—Hewston had equipped his second-generation traps with dying animals. But again with no result. Whereupon, he conceived the idea that the deaths of animals and the deaths of people may be different in essence. (He became interested in the Catholic doctrine that animals have no souls and are automatic objects.)

incorporated in his perfected machine as well then were tiny pheromone traps with the stored drops of the chemical isolated by vacuum and mini-Faraday cages.

His idea was to imitate death to hypnoize oneself into a death-trance then turn the taps on.

"Do you want me to lie down in there?" I asked him. "Is that all this is leading up to?"

And then release the nonexistent whiff of cyanide or something similar. Then I not only catch Death but kill him too. After all, if you can legitimately shoot someone you catch burglaring your apartment...

As I gazed through the hooded periscope into the pearly-lit interior, the empty bier reduplicated itself perhaps a dozen times in all directions before losing itself in a fog.

Death is a mass murderer by comparison. The biggest criminal.

I couldn’t tell whether he was joking or being serious.

I wonder in that case whether he’d be killing Death in general or just the personal death of whoever was in the machine.

A whole lot of people die every second. Ralph. They die simultaneously. Even if this Death of yours skipped about at the speed of light—

"Okay I see your point! I suppose death could be general and particular...it was something that Death would stage and descend on like a mating moth. The death agonies couldn’t happen until Death had been called. This accounts for certain overly protracted deaths: the bodies of such people simply couldn’t produce enough of the pheromone.

True to form, Hewston had managed to get tiny amounts of this corpse sweat synthesized and he had built a number of prototype death traps designed to release quantities of it and to snap shut on whatever vectored upon the molecule—with no success. So he concluded that a dying body actually needed to be there.

Despite his qualms at taking life—which he regarded as sacrificing to Death—Hewston had equipped his second-generation traps with dying animals. But again with no result. Whereupon, he conceived the idea that the deaths of animals and the deaths of people may be different in essence. (He became interested in the Catholic doctrine that animals have no souls and are automatic objects.)

incorporated in his perfected machine as well then were tiny pheromone traps with the stored drops of the chemical isolated by vacuum and mini-Faraday cages.

His idea was to imitate death to hypnoize oneself into a death-trance then turn the taps on.

"Do you want me to lie down in there?" I asked him. "Is that all this is leading up to?"

And then release the nonexistent whiff of cyanide or something similar. Then I not only catch Death but kill him too. After all, if you can legitimately shoot someone you catch burglarizing your apartment—

Theology College would be up in arms.

I guess it’s a way of persuading people to volunteer. I joked in turn. "Roll up roll up! Come into Hewston’s Death Cage and he’ll make thee immortal with a kiss of cyanide gas. Oh but you’re forgetting something. Ralph. You’d kill the subject that way before you nailed his death. Baby and the bathwater. Ralph Baby and the bathwater!"

Ah Ralph looked crestfallen.

But this was all just horsing around. You’re going to try it out yourself then? I asked more seriously. But by just simulating death? By pretending to take it that’ll be with the Swami’s help.

The Swami is our pet name for our Indian counselor Mr. Ananda. Ananda has dwelt deeper into the oceanic unity state of death insertion than anyone else I have ever met. (An oceanic state on the one hand, but he also compares entry into it to a space capsule leaving the familiar earth behind and entering into orbit high above where all minor details are erased up on the edge of the endless sea of death space.) Ananda has used deep meditation and self-hypnosis techniques of Indian origin to plumb this way station into nothingness—sometimes accompanying the dying down, or up there in deep rapport with them—before returning to full life to report on it. Needless to say Mr. Ananda has never met Death—Mr. D.—on his journeys.

"I’ve been taking lessons Ralph nodded. Admittedly I haven’t spent years at it as he has. But I think I can turn the trick. Think so. When I get down deep enough my own theta-thanatos brain waves will start the pheromones of death dripping.

When’s all this going to happen?

Next Tuesday I’ll need a few observers. Ananda has volunteered, though he thinks me motives are—well you understand. But he’s cleared a space in his schedule.

I can spare the time too Ralph. Good man. Now look down here.

He showed me how the periscope, the optic fiber and the mirrors let the outside observer see around the whole inside of the cage even when the glass walls are mirror opacified. As I gazed through the hooded periscope into the pearly-lit interior the empty bier reduplicated itself perhaps a dozen times in all directions before losing itself in a thickening golden fog while the filigree network of the Faraday cage overlapped and overlapped itself within the mirrors.

Tuesdays came. Besides Hewston and the Swami and me there was also present in his office Dr. Mary Ann Szczepanski our foundation medic looking lovely in tight silver leggings—her dark guer white coat draping her flanks in ivory marble.

Here then was the mousetrap with the big cheese—Hewston—soon to be laid out in it synthetically Gorgonzola-scented with death (though it wouldn’t be an odor that any of us could pick up consciously). a trap of the nonlethal variety.
"If it is a far better thing I do now," Ralph grunted, hammering it up a little—to Swami Ananda's evident disapprobation—as clad in a thin linen smock, he wiggled through the door of the Faraday cage, careful not to buckle any of the surrounding thin wires. He stretched himself out on the water bier.

I shut the door and locked it with Ralph's golden key, as per instructions. The key, I turned round my own neck. Then I turned on the current to the cage at very low power it hummed faintly.

The glass walls descended and locked together still in their see-through mode, Air recycling on.

You look like Snow White, shouted Mary Ann, checking his vital signs on the read-out. But where's the poisoned apple?

Hearing her, Ralph nodded ironically in the direction of Mr. Ananda. Then Ralph composed himself as Ananda began loudly to intone a monotonous tape loop refrain in Sanskrit, which Ralph took up—and insisted, in due, though I couldn't hear his voice.

Soon Ralph raised his hand, and I opened the glass walls.

When I peered in through the periscope, I was utterly still, looking suitably blanched and corpselike in the poor light. He lay beside his mirrored self, which lay beside another mirrored self, Toe to toe, with yet others. Each in their gilded cage, the bars of which grew thicker as the bodies proliferated further. It was quite easy to lose the center of focus and get lost. At this moment Ralph's machine seemed more like a device for cloning corpses.

The descent into the death trance took the best part of an hour Mary Ann monitored Ralph's vital signs dutifully the whole time. The sun shone through the window upon what seemed like a great marble block, a white karb, a musalum. A bedraggled penguin strutted its and fra for a while on the window ledge. Distant street sounds shifted up, and a few times the whirring of copters beat down. Otherwise it was very quiet.

Mr. Ananda peered at the brain wave screens. He tapped one with a slim brown finger, and impeccably manicured nail. "Here's the beginning of the theta-thanatos rhythm."

I hugged the periscope hood around my head and heard only the Swami's voice. "The other rhythms have flattened out now. It'll take four of five minutes more before the theta thanatos is full enough to switch on the pheromone drip. But I wasn't about to pull away. I had no intention of missing anything—not that I believed there would be anything (and a videocap was running anyway). But I'm like that. Set me on a hilltop and tell me to count shooting stars and I'll watch all night, for a friend.

"An Pheromone drip on now."

Mr. Ananda announced.

I shifted reflexively, even though I'd have smelled nothing whether the experiment had been enclosed in glass or not. I watched the point of the needle, near Ralph's bare calf waiting—at Mary Ann's command—to plunge a massive dose of stimulants into him should the need arise. I kept my hand on the button that would multiply the power fed into the Faraday cage fiftyfold.

What I saw then didn't record on the videocap—as if the tape couldn't register light of the wavelength I saw as if it came from a different spectrum entirely! But my eyes saw it—I swear it.

A red (except that it wasn't red thing) appeared abruptly, perching on Ralph's chest. It was like a bat. It was like a giant moth, it was like an angel on a Christmas tree illuminated by firelight. It fluttered, strobolike. It seemed to dance in and out of existence. It had big glassy eyes and a tiny sharp beak. It screeched claws at its vei-like wings—if they were wings—like the spines that are fastened on fighting cockles. I realized that I was seeing only what my eyes and brain could see. Not necessarily what was actually there.

"The theta finale!" sang the Swami who couldn't see any of this. "Stimulants, Mary Ann, I already have! The signs show—"

I squeezed my button too at the same time. It was needed. Whatever Ralph had set up to trigger the powering up of the cage had already done its job. The cage crackled with fiftyfold illumination. The needle had slid into Ralph's calf. He jerked like one of Galvam's frogs. He sat upright on the water bier his eyes wide open.

The red thing leaped from him, flickering phasing in and phasing out (but more in than out). It hit the side of the cage and seemed to pass through the electrified figure. And the glass walls, too. But no it passed through, yet not into the room we were in. It passed through into one of the reflected doubles of the cage actually into it. Leaving no "original" behind in the real cage.

I realized, as I hadn't earlier, that there had been only one of it all along from the moment of its first appearance. No reflections. No duplicates. Many reflections of Ralph but none of it. How could something I could see with my eyes not possess a reflection in a mirror? Perhaps it had to do with its own indivisible essence.

The red moth beat from one phantom cage to the next, circling outward from the real Ralph Hewitson. But as it got farther away, the golden bars thickened. Now it was flying into a wall of increasingly thick syrup. It could not get farther out through the reflections.

Ralph, sitting upright and following it with his gaze, grabbed in the air with both hands. The air above the real water bier was, of course, empty. The thing—Death—wasn't there. But all the hands of all his reflections grabbed in unison in all the mirror cages. He seemed to know exactly what he was doing.

Death flapped frantically around the circuit from one cage to the next to evade his hands. But it was all one cage to Ralph.
He caught it. He caught it! In a cage thence removed from the original; his reflection's hands clasped on it and held it tightly. His own hands—and those of all the other reflections of him—were empty. But not that pair. Not those. Through the glass he held them. He held them all!

Death slashed at his hands with its wing claws and gouged with its beak. Blood ran down the hands and wrists of that one reflection. The real Ralph cried out in pain. Yet his hands showed no trace of wounds. Only the hands of the one mirror image that held the creature were flawed; but he felt the pain. He continued to wrestle with the creature. Face distorted, he held on; two empty hands cupped in midair, hands standing out. And however much it hurt him, however much flesh it tore from his phantom fingers, his hand bones still held it securely out in the reflection.

What's happening? Mary Ann called. "He's overreacting to the stimulant! What's happening, Jon?"

He's fighting Death. I cried. He's caught Death, and he's fighting it! Just then Ralph turned to face me—toward where he knew I must be. "Don't panic! Transcend the glass!" he shouted. I tore myself from the penscope hood and found the switch, and hit it immediately. All of us could see through the cage. And of course all of the reflection worlds had disappeared.

But Ralph still wrestled—with thin and his fingers still clutched. Ah! I could see what he was doing. Though to the others it must have seemed an insane pantomime. He was tearing Death free so that he could hold it in one clenched hand—to throw it far away from him. No, he'd never give up his hold on Death now that he'd succeeded. He held that one imprisoning hand aloft in a kind of open-fisted salute, gripping through his agony baring his teeth.

"Cut the current!" he ordered harshly. I squeezed the bulb. The cracking hiss faded away.

"Unlock the cage, Jonathan! Even in his pain he refused to abbreviate his name! I hesitated briefly. Was I in effect letting Death out into the world? But with the current no longer flowing, I suppose a mess of wires could be no obstacle.

Ralph saw my hesitation. You fool! I've got hold of him! he shouted at me. From the other side of the wires—which he could have burst through by main force if even in extremis he had no wish to damage any part of his invention. Anyway he isn't here. Not in this here. He's still in the reflection—and I've got him tight there!

Had he? Had he really? Or was the pain so deeply etched into his torn nerves and scoured finger bones that he only thought he had him? Was he only feeling the ongoing fight in the way that an amputee still feels intense pain from a severed phantom limb? As he continued to clutch the air and bite his lip, I couldn't believe that. The reflections had gone away wherever reflections go when they're off duty, but his reflected hand was still clutching Death out there, mimicking the shape and stance of his real hand here. He tore the key from my neck, snapping the chain in my haste. I jabbed it at the lock a few times before I got it in and turned it.

I pulled the door open. Ralph crawled out and stood, his clenched empty hand at arm's length, triumph and torment on his face.

Three days have gone by now Ralph hasn't slept a wink. I doubt that he could let go now if he wanted to. His hands and Death are too intermingled; claws trapped in bones, bones binding wings. His hand remains bent like that of the worst victim of arthritis, unable to flex yet to all other appearances a perfectly unblemished hand.

Hysterical cramp is what Dr. Szczepanski diagnoses about his hand. She doesn't believe what I saw. Neither does Swami Ananda. They know there's no such thing as Death; and the videotape only shows Ralph alone in the cage then suddenly jerking erect and screeching at the empty air.

I'm alone with him now in the office. It's night. Many deaths occur at three o'clock in the morning. That's the dead point between night and day, the hour of despair, the low point of the body rhythms. Right now it's thirty-minute Ralph sits slumped in his chair, kept awake by pain, his clenched hand resting on his desk.

"You saw Jonathan, I saw Yes.

Mary Ann believes that I autohypnotized myself by staring through that penscope into the reduplicating mirror room too long. My attention drifted away into the mirrors. I was virtually in a state of sensory deprivation. I was hallucinating freely and grandiosely when Ralph jerked upright and began his phantom fight. I was seeing a mole in my own eye. I gave it unreal life—just as Ralph torn out of deepest trance blood pounding through his heart, saw that blood personified in midair as the rooster that the moth of death.

"You believe me now, Jonathan? Believe me now?"

So Ralph sits before me holding Death at arm's length—though for how long? When Death at last escapes from him does it wing elsewhere or does it come directly here? How must I perch on the real hand whose mirror image holds it at bay, captive in the realm of reflections?

It feels as if my bones are coming apart. Ralph groans. But maybe they aren't. All this hand's still solid. Oh my too solid flesh! But I can see them—the other ones. I only feel God, what I feel. Let him go. Open your hand.

"I can't, Jonathan. I can't.

It's a quarter to two. Outside the city is as still as a sepulcher. Silent night. Ralph is too weary to scream. Together we wait."

FOR FUTURE REFERENCE

Moving? We need 4-6 weeks notice of a change of address. Fill in the attached form below.

New Subscription or Renewal? One year of Omni is $18 in the U.S., $24 in Canada and overseas. Please enclose a check or money order for the appropriate amount and allow 5-6 weeks for delivery.

☐ New Subscription ☐ Renewal

☐ Please remove my name from your mailing list

☐ This is a change of address. My new name is below.

Name
Address
City State Zip

Payment must accompany order. (Please mark O)
A
dvertisements for Flash Gordon, the recently unveiled
film epic, have dubbed its
protagonist the Greatest American Hero of
All Time. It is an arguable claim—certainly
the eclectic group of Superman, Popeye,
and the Lone Ranger—all of whom like
Flash Gordon—are currently represented
by big-budget films—are no less great no
less red-blooded. However, since heroic
America is enjoying a renaissance
there is at least one crown that can be
placed upon the platinum-blonde locks of
the durable space warrior: Having
engaged in unequal combat with more
alien creatures, in more exotic lands, and
with more fantastic weapons than any
other fictional heroes Flash Gordon is
surely the Greatest Science Fiction
Hero of All Time.

Flash is the creation of artist Alex
Raymond, who began publishing the
comic-strip escapades of his athletic Yale
man on January 7, 1934. Flash proved
remarkably popular in that medium
though even greater prominence awaited
him in 1936, with the release of the first of
three motion picture serials starring Buster
Crabbe. Since then, Flash has remained
on display in a series of novels and
long-running comic books and television in
both live-action and cartoon programs
and as a mainstay of toys, games, and
coloring books. Now he has surfaced in
his biggest and grandest incarnation: a
$30 million motion picture produced by
Dino De Laurentiis and scripted by
Lorenzo Semple, Jr., with a creative assist
from Dune author Frank Herbert. Starring
as Flash, bravely all the unearthly perils
that money and imagination can buy is
dashing film newcomer Sam J. Jones.

Jones is a personable and enthusiastic
actor who, before Flash Gordon, was best
known for his role as Bo Derek’s husband
in the movie 10. Appearing subsequently
as a contestant on The Dating Game (‘I
was low on money—he confessed) Jones
caught the eye of De Laurentiis. Though
the actor didn’t win a date—he was offered
a screen test—and a week later, landed one
of the most coveted film roles to come
along in many a year.

Jones spent six months being Flash
charging through hyperspace to the
planet Mongo swimming through
monster infested swamps and battling
the minions of Ming the Merciless with
swords, whips, ray guns, and lists.

I took my lumps and bruises saving the
earth,” Jones quips, “but when I’m cast for
a film by golly I want to be a part of the
film. I used to get Dino and our director
Mike Hodges up tight because I’d be so
involved that I’d overdo things like the fight
scenes and end up getting hurt. They had
to settle me down before I killed myself.
But I wanted to add as much as possible
to make the film work.

So he did. For months before the
cameras rolled the six-foot-three-inch
actor ran six miles each day then worked
cut in a punishing regimen of pullups,
pushups, and weightlifting. “I also did my
homework,” he boasts, reading the old
comic strips and getting in touch with
science fiction buffs who could tell me in
on the unusual denizens of the Flash
Gordon universe from the Hawkmen of
King Vultan to Thun the Lion Man to Prince
Barn. Since I was never really a big sci-
cence-fiction fan it was all quite interesting
and very useful as flavor.”

However, Jones says quickly, “At no
time did we get this texture overwhelm
Flash, reducing him as musclebound
figure who does nothing more than cross
his arms impertinently and flex his muscles
while looking at the strange costumes
and scenery.

Jones says that what was important to
him and to the filmmakers was to make
Flash as believable a character as
possible without changing the look and
feel of the property. “We stuck close to
the comic strip as far as the sets and story
goes,” we retained most of the original
characters. We couldn’t allow ourselves to
worry about things like whether the
Hawkmen made aerodynamic sense—
they are an inherited part of the legend.
People have certain expectations about
Flash Gordon. You can’t let them down or
they’ll tear the theater apart.”

Remaining faithful to source material is
apparently a lesson De Laurentiis learned
when his brutalizations of King Kong and

Guarded by Hawkmen, Flash and Prince Barn engage in pitched battle on a swaying disc.

By Jeff Rovin
Hurricane flopped at the box office. Thus the only fundamental tinkering in Flash Gordon is with the framing story wherein Flash Dale Arden (Melody Anderson) and Dr. Zarkov (Charm Topol) head into space to prevent Ming (Max Von Sydow) from destroying Earth. The story has been updated to the 1980s, and as a result Flash is no longer a solo player but a quarterback for the New York Jets.

Either way,” Jones says, “he’s a natural leader who doesn’t like to be beaten. He doesn’t have any real knowledge of science—probably took PE in college—and when he’s thrust onto this planet, Mongo, he’s a bit uneasy about it. One would have to be uneasy on a world where the inhabitants spend most of their time sitting on another’s throat. But if Flash doesn’t have great intelligence he has wisdom and experience and he’s not a quitter. When his instincts start kicking he becomes a character who is truly a hero in the classic sense of the word. He’s ready to risk life and limb for a cause he thinks is just.

The Greatest American Hero? Jones smiles. “I don’t know about that. But he’s the kind of hero America needs today, a human hero. A man who is more than just macho. He doesn’t have any big, heavy emotional scenes. He doesn’t cry or anything like that. But he’s vulnerable. When he’s caught or hurt the audience jumps out of their seats. They care. When he saves the life of a man who’s been trying to kill him, they admire Flash. If you have a hero whose actions are totally familiar to you who is two-dimensional or who can’t be stopped, if you have a story where the expectations are obvious, then where’s the surprise?”

The actor adds, tongue in cheek, Flash is sometimes a little naive. For example Zarkov dupes him into entering the space capsule by telling him that it’s a phone booth, but I think those camp, innocent elements help to balance the more serious and intense scenes in the film.

At twenty-six Jones is part of a generation that has become sensitive to the radical changes in the human condition, on screen and off. As hard as he and Melody Anderson worked to make the relationship between Flash and Dale credible, it still exists within the obviously sexual framework of the story. Yet Jones is thoroughly dedicated to sexual equality.

“Flash is fairly traditional. He looks at Dale and while she is attracted to his warmth and courage, his first question is, ‘Does she have a nice face and nice legs?’ To his credit, it’s only when she opens her mouth that he decides that this girl is for him. I’m glad to see attitudes changing and I would love to see men and women on a genuinely equal footing.”

“Despite my conditioning—the conditioning most men my age went through,” he adds, “I’m getting to a point where I can cut off the old. Well, I’m the man of the house. thing with my fiancée. I look forward to more of these kinds of basic changes in our future society when men can talk about more than, ‘Well, the Mets won today, or How about deer hunting next weekend?’ Boys in high school can take ballet classes and not be classified as effeminate. Which is all BS as far as I’m concerned.”

If Jones is idealistic about where human relationships may be headed, he is far more pragmatic about the film industry and where it is going. “I don’t agree with what most people are saying that our fascination with television and movies is a bad thing. As a society we’re advancing and growing. Since you can’t get rid of progress you have to work with it.” The nuclear-power plant that they tried unsuccessfully to shut down in Maine [Yankee Freedom] and the Titan missile that exploded in its silo are extreme cases, and it’s an inexorable fact of life that the more we advance, the harder it becomes to avoid our tampering. Films can help people adapt to change and can explain things better than books can, better than Oliver Twist. I’m not putting down Charles Dickens, but I’ve seen audiences come out of movies about something currently topical such as The China Syndrome and say, ‘My God, I don’t know anything about that. What’s wrong with people getting some of their information on current events from the movies?”

Jones is typical of the new actors working in this era of vast technological advances and equally vast technological upheavals in the film industry. My understanding of science is limited to the mechanical and optical effects I see in movies, though I looked upon new inventions with interest and joy.” He says he is familiar with all the latest developments, from cable television to video discs and recorders and believes that his fellow actors were justified in striking last summer to earn royalties from these proliferating new outlets.

The producers are going to make some money. I know that. Given this fact I don’t see why everyone wasted one another’s time. I’m the type of person who would have walked into those negotiations and said, “This is the way things are. They’re new ways, but what? Let’s face them and work them out.” I like to get things done. I’ve always felt this way even when I was driving a truck or working as a dishwasher. I learned to expect the unexpected on every front, deal with it, and move on.”

Because he looks forward to the accelerated importance of film and television in the future Jones has formed his own production company. He plans to be involved with filmmaking, not only as an actor but also overseeing all phases of film production, including the marketing of video cassette sets. “And ultimately if I’m successful I want to give talented people a chance to share their experiences and insights through film. The way Rod Serling did on The Twilight Zone, a show that I watch whenever I can. Talent shouldn’t be ignored just because people don’t have the proper contacts.”

Jones recalls an event that serves as a fitting comment on his ambitions. “A man walked up to me and said, ‘I’ve been wanting to meet my son for a long time. I looked up and there was Buster Crabbe! I said something dumb like, ‘How ya doing, Pop? But it really was a thrill for me. You should see him!’ The man’s seventy years old, and he has more energy than most people my age. I was glad to see him so fit and happy.” Jones admits that the future might hold few greater rewards than it some kid recognize him a half-century hence and feel that same sort of excitement.

Whether this ever happens, whether he follows in the footsteps of Buster Crabbe as one of the screen’s great action stars or realizes his broader goals, one thing is certain: For Sam J. Jones, Flash Gordon is a giant first step.
fertilizers and pesticides. The U.S. Department of Agriculture's Report and Recommendations on Organic Farming, issued late last July, suggested that composting processes could be devised 'to improve the nutrient and tilth value of municipal refuse and many industrial wastes.'

New guarantees of soil conservation also can be met by breaking a few bad agricultural habits. Wes Jackson of the Land Institute in Salina, Kansas, proposes a shift toward perennial agriculture. Historically, society's tendency has been to farm the monoculture of annuals. But nature, he says, is toward a polyculture of perennials. Our ancient decision to go with annuals, Jackson suggests, perhaps was a wrong turn. Annuals do have many virtues as food plants. They are entering and growing fast; and convert solar energy into harvestable seeds. But their cultivation, especially in monocultures such as a field of corn, leads to erosion. Annuals require that the soil be unevenly cultivated for long periods each season. Periods in which the soil is vulnerable to wind and precipitation. For row crops such as corn and cotton the soil between rows is bare even in the growing season.

Present day farmers make considerable use of perennials—apple, almond and citrus trees, blackberries, grapes. We know that the elaborate root systems of perennials are good soil builders. Perennial agriculture does not require that the land be scapped clean at the end of each growing season. Most of a modern farmer's fuel expense is in seedbed preparation and cultivation of annuals. With perennial agriculture this cost would be lowered. It would reduce dependence on chemical fertilizers and lessen the need for pesticides, especially if utilized in polycultures.

Mankind has directed very little of its overabundant imagination to the development of new crops. We make use of less than 1 percent of all the known species of seed-producing plants. Fewer than a dozen species provide most of our food. Jackson and his colleagues are experimenting with Eastern gama grass, *Tripsacum dactyloides,* a perennial relative of corn whose protein percentage is three times that of corn and twice that of wheat.

What the earth needs right now are fewer ingenious ideas and more good ideas. The best ideas for soil preservation are those that approximate natural systems. The monoculture of annuals is not a natural idea. Neither are the biomass harvesters who have built their scheme on the false example of leaf-consuming microbes. The microbes become a component of the living soil by returning large measures of humus for the heat this process liberates. The closest analogue in nature for biomass conversion is fire, which leaves ash for the forest that will come after.
Today, never before, science books are breaking into the best seller lists, displacing cookbooks and mysteries in bookstore windows. This past year alone, for example, John W. Wiley & Sons, one of the nation's most prominent science book publishers, published 279 more science titles than in 1979. To help readers assess this rich flow of science books, Omni has assembled a panel of four distinguished judges to select the Ten Best Science Books of 1980. Here are their choices:

The Search for Solutions
- Horace Evans (Viking Press; $10.95)

Dawn of Modern Science by Thomas Goldstein (Houghton Mifflin; $12.95)

Hans Bethe: The Prophet of Energy by Jeremy Bernstein (Basic Books; $12.95)

Freud: The Man and the Cause by Ronald W. Clark (Random House; $19.95)

Four judges were impaneled to assess the past year's output of science titles:

- Gregory Benford, professor of physics at the University of California at Irvine
- Gilbert Cant, a medical and military writer
- Brian Fagan, professor of anthropology at the University of California at Santa Barbara, and Martin Gardner science writer and mathematical columnist for *Scientific American*

The panel's clear favorite is Horace Evans' *The Search for Solutions*. It's hard to see why. Science, Judson says, is our country's art and this book respectfully demystifies exactly how scientists do science. Its eight chapters focus on particular aspects of the scientific method, pattern, change, chance, feedback, modeling, prediction, evidence, and theory. Judson's clear exposition of such thorny concepts as particle physics and protein synthesis is set forth with extraordinary grace, simplicity, and sensitivity. What emerges is not only a history of the scientific method but also an appreciation for the greatest of all mysteries: how the human mind is able to know the structure of the world in which it finds itself.

The world expands to a universe of awesome possibilities in two recent releases: Silk's *The Big Bang* and Ferris's *Galaxies*. Dr. Benford describes Silk's book as a well-guided tour of cosmic evolution: briskly piloting its readers through a newly charted waters of galactic origins, stellar evolution, and the formation of heavy elements. In lucid, buttotechnological language, Silk brings the physical and chemical underpinnings of the heavens within our grasp.

Ferris's *Galaxies* offers a more inspirational approach to the same subject. The author invents an imaginative starship that conveys the reader to the center of the Milky Way through intergalactic space, beyond galactic superclusters, and out to the edge of the universe. The text is informative and accessible. Ferris is not shy about letting his imaginative metaphors reflect the beauty and wonder he observes. But the book's real strength lies in its photographs: our ember sun, ghostly whirlpools of spiral galaxies, starry pastures of nebulae. According to Professor Fagan, these powerful images reinforce Ferris's lyrical style, set new standards in science publishing.

Ron Redfern's *Corridors of Time*, a vivid photographic examination of the Grand Canyon, also draws upon the time-travel image. This journey, however, returns to the earth of 1.7 billion years ago. Geological upheaval and erosion in the terrain have left huge escarpments and deep troughs. These are the multitudinous corridors of time, ancient landscapes that date from the newly formed gaseous protoplanet that would eventually support organic life. For this project, Redfern developed a

The Search for Solutions

Masterpieces of scientific investigation are the subject of Judson's award-winning book...
MACROENGINEERING — it takes the wildest ideas, and turns them into reality. Macroengineers built the Panama Canal, today they are starting on the English Channel. You believe artificial islands will be the size of Manhattan (or even Paris) to Los Angeles? In time, coming technology will transform our planet and our lives. Next month's Omni.

SPACE ADVOCATES — the politicians whose budgets control NASA are in for a rude shock. Vietnam and the environment will make the 1970s space will be the issue of the 1980s. In the last 10 years more than 100 private organizations have dedicated themselves to promoting research and development. Soon they will swell in numbers and in strength. Are we ready to do their cause? For a look at the space-advocacy scene, read February's.

SUBLIMINAL PERCEPTION — if it came as no surprise to American consciousness in the mid-sixties when a car ad flashed the words 'Buy Mexican Leather' upon Navajo's alluring face. The words flickered too quickly for the audience to see. Coke sales climbed by 58 percent. Despite the public outcry that followed, interest in subliminal perception is being rekindled. In February's Omni, Erich J. twits reports that subliminal messages are being used to treat mental patients and train professionals in specialized tasks. How can we be informed without being aware of the influence? Read the full story next month.

INTERVIEW — one reason we've gotten behind in the technical parade is that often research is the wrong thing. The speaker is Malcolm Forbes, visionary industrial owner/publisher of the country's leading financial magazine, living proof of free enterprise. The automobile industry, for instance, has spent little and money investigating people's color preferences instead of developing a gas-saving engine. Forbes has been called one of the greatest minds of our Adventurist corporate Titan, philanthropist, and futurist. Forbes offers a fresh insight into the future of workaday capitalism—high technology space, harmony, and countless other topics in an exclusive interview in February's.

SCIENCE FICTION — the hero of Bob Buckeye's Where No Man Goes is against death to prove his theory of interstellar transport. People are outblazed at their flawed playthings in Barry N. Malzberg's Pega Got Shorts. Japan science fiction makes its Omni debut with Tsutuki Yasutaka a Standing Woman special process of panoramic photography that provides readers with distortion-free views approaching 360 degrees.

The writer begins in the Cenozoic Era, before the story of the Grand Canyon ends with the decimation of the Navajo tribe by Kit Carson. Redfern will have explained continental drift, plate tectonics, mantle convection, atmospheric evolution, and the flora and fauna of the U.S. Southwest. The author, amazingly, is not a schooled scientist. Carl Sagan, in his introduction, says that Redfern is an amateur in the best sense of the word. For a book thatroduces he has been reading about the area, exploring it himself, talking to old hands and scientists expert in the lore of the Grand Canyon. Corridors of Time should make "amateurs" of all its readers.

Steven Jay Gould's The Panda's Thumb explores the delightful devious pathways of evolution. This series of essays, which originally appeared in Natural History magazine, touches on every conceivable aspect of natural history from fossil fraud to Brontosaurus brains. The common bond of these essays—their language of instruction—Gould's thesis states—is evolutionary theory. Gilbert Cant remarks that Gould is comfortable in a variety of disciplines and is ready to grasp emerging fields of study beyond his own paleontology. With wit and erudition, Gould tackles his subject matter from the most unlikely angles. The mnemonic dysfunction known as Down's syndrome triggers a discussion of racial bias and its role in scientific reasoning. Even Mickey Mouse comes under Gould's ontogenetic scrutiny. The Panda's Thumb may help clarify the issues facing the newly revived creationism/evolutionist dispute, though nonpartisans come out enlightened about both sides of the issue.

Gould got the idea for his title from an anatomical moniker. A panda's thumb is not a thumb at all but an overgrown wristbone. The opposable, flexible thumb is what distinguishes the human hand which grips, twists, and squeezes from a paw. There is a more comprehensive study of prehistory in John Napier's Hands. The ability to hold objects is just the beginning of Napier's appreciation of what he feels is a much-maligned part of our anatomy. While the structure and evolution of this versatile instrument will interest the lay anthropologist, the book is a real appeal comes in the discussion of right-left-handiness: fingerprints and gestures. Napier puts these matters in their social and cultural contexts and already outlines the strengths and weaknesses of the right-handed world in which the majority of us function.

It is an easy semantic slide from digits to digits. The late Christopher Evans's The Micro Millennium is a wide-ranging discussion of the computer revolution which already is ushering in the dreams of past decades. Evans shows how science and technology are dependent on computers to the extent that the machine is introducing new knowledge, and not the other way
around. Yet as the computer reduces the drudgery work in offices and the physical labor in factories, workers will have more and more leisure time and the number of unemployed people will soar. Evans's book vividly portrays both the blessings and the perils of this microchip revolution.

Modern science did not begin only in the sixteenth or the seventeenth century. Even Isaac Newton, arguably the greatest scientist of all time, recognized that he stood on the shoulders of giants who had gone before. But today Gardner says, "the debt modern science owes the Renaissance and the Middle Ages is so often downplayed or ignored completely.

Thomas Goldstein's Dawn of Modern Science demonstrates that many key principles of present-day architecture, astronomy, chemistry, mathematics and medicine originated in the Middle Ages. Of special interest are the contributions made by the Islamic culture to medical care and surgery mathematics and empiricism. Goldstein shows how the Middle Ages and the Renaissance produced more cohesive societies than students of those periods perhaps previously thought, and that the knowledge and practice of one discipline were picked up and used by another. This interdisciplinary meld produced the cathedral at Chartres, and the artistic discovery of perspective benefited virtually all the empirical sciences.

The Middle Ages were characterized by the belief that the same forces manifested in nature also governed human behavior. Modern psychoanalysis is still engaged in applying the insights and methods of the natural sciences to the conduct of human affairs. Ronald W. Clark, in his streak, and the Cause chronicles Freud's struggle to quantify the mechanisms of the unconscious. Clark follows Freud's association with Wilhelm Fliess, Carl Jung, and Ernst Jones, and the birth of psychoanalysis. The famous case histories, the study of dreams, and Freud's use of cocaine. Clark, who has written on the lives of Einstein and Bertrand Russell, utilizes his instincts as a biographer instead of adopting those of a psychoanalyst. Clark's biography is mercifully more concise than Ernest Jones's long-term standard work. Clark says, "Hans Bethe has been called 'the great craftsman of physics.' Bethe's careful thorough personal approach to theory and experiment and his wizardry with numbers placed him in the vortex of physics history and in 1957 he won the Nobel Prize for discovering 'how the sun works.' Jeremy Bernstein devotes the opening parts of Hans Bethe: The Prophet of Energy to Bethe's school days in Germany where he Lurks Pauling, and Isidor Isaac Rabi exchanged ideas concerning the new science of physics. Later Bethe emigrated with the development of the A and H bombs and subsequent nuclear weapons controversy. But it is the final portion of Bernstein's book that distinguishes it from conventional biography. Bethe in the past few years has dedicated himself to the physics of energy. The energy problem, as Bethe sees it, is more complex than the purely technical feat of developing new energy sources. Bernstein says, "We are dealing in futuristic estimates [of resources] on which honest and informed people may disagree. What is essential is to develop a sense of these limits and a general feeling for what is true and what is not."

Bernstein presents Bethe's analysis of future energy sources with consummate impartiality, whether nuclear solar oil or coal. Bethe sees his role as educating the public and the government so that they can make informed decisions. Bernstein's viewpoint is particularly valuable. As a physicist, he is able to assess the scientific realities of any chosen energy policy. "This is a book Benford cautions, "that should be read by every American.

With almost every passing week the world is becoming better understood. The readers are impatient to have this world explained. With clarity and precision each of these ten best books illuminates a previously obscure corner of the world. Dr. Lewis Thomas, in his preface to Judson's book, writes, "We need people who can tell us how science is done, why it is done, and how to distinguish among good science, bad science, and nonsense."

The Dungeons & Dragons® player... always ahead of the game.

Dungeons & Dragons® Adventure Games

Available at better game stores everywhere.

TSR Hobbies, Inc.
356 Lake Geneva, WI 53147

Dungeons & Dragons® Adventure Games

From The GameMasters
TSR Hobbies, Inc.
Available at better game stores everywhere.

TSR phone catalog written to TSR Hobbies, Inc. P.O. Box 756, Lake Geneva, WI 53147
Astrophysics benefits from new technologies, but it seldom contributes to them. But in the not-too-distant future the stars may teach us how to build devices that are now only physicists’ dreams. To see why let’s go back a few years.

In the mid-Fifties the first successful maser was hailed as a dramatic technological breakthrough. Physicist Charles Townes of the University of California at Berkeley eventually received the Nobel Prize in physics for the invention. But by then, radio astronomers on the Berkeley campus found that Townes had been scooped by someone who didn’t need a jumble of coaxial cables, power supplies, and strip-chart recorders to build a maser. Mother Nature had been doing it for billions of years.

Masers and lasers operate because of the way atoms within them absorb and release energy. Atoms can’t take in simply any amount of energy. They hold it only in fixed amounts. So they absorb and emit only radio waves or light whose energy is exactly equal to the difference between any two of those fixed energy states. By handling the atoms in just the right way it is possible to “pump” the same amount of energy into a large number of them at once. But these “excited” atoms are highly unstable. When light of just the right energy passes through an excited gas each photon can force an atom to give up its energy in the form of an identical photon. The two photons trigger other atoms, and before long an electromagnetic avalanche is under way. The resulting light can be millions of times brighter than an incandescent lamp burning at the same temperature.

In 1963 Harold Weaver and his radio astronomers at Berkeley were studying the radio waves emitted by hydroxyl (OH) groups in the Orion Nebula, the nearest region in the galaxy where stars are still being formed. Hydroxyl emits some of the brightest radiation of all the molecules.

Weaver and his colleagues were astounded to find that one part of the nebula showed a bizarre emission spectrum. Its line intensities were all wrong, and one was so strong that Weaver suspected it of belonging to a different molecule altogether. They dubbed it Mysterium.

Before long, however, the evidence was clear. Mysterium was simply OH. But the OH had formed a natural maser. The molecules were being pumped by infrared light from nearby gas clouds that were collapsing to form stars. Since then, hundreds of interstellar OH masers have been discovered.

In 1968 radio astronomers at MIT discovered a second type of OH maser in variable red giant stars. With diameters several hundred times that of the sun, these stars have burned their primary nuclear fuses and are in their death throes. As they tremble and quake, they eject gas that forms a shell around the star. When this cool to a few hundred degrees Kelvin it forms molecules that can function as masers.

The next year brought the discovery of the stellar water maser. Soon after came the strangest one of all: the silicon monoxide (SiO) maser. Unlike the abundant oxygen and hydrogen of hydroxyl and water masers, silicon is relatively scarce. Stranger still, when astronomers identified the exact molecular energy levels in these masers, the SiO molecules proved to be between two highly excited states. Such stellar masers can exist only in regions of the circumstellar shell that are at about 1000 degrees Kelvin.

So far only molecular masers have been observed. But in principle there is no reason to believe that Mother Nature has not also built optical lasers, chemical lasers, free-electron lasers, and possibly even gamma-ray lasers or grasers. They would probably form near hot stars, novas, and other violent objects that can emit high energy radiation to pump the atoms and nuclei. Physicists all over the world are now working to build many of these devices. Learning how Nature accomplished it could do much to speed their success.

And it’s a pretty good bet that she is operating exotic lasers that we humans haven’t even thought of yet.
1. THE LOPSIDED COIN. To determine a binary digit, it is necessary only to flip the coin twice. Since the coin is unfair, the outcome either heads (H) or tails (T) will not occur with the same frequency as tails (T). But the sequence HT/TH/T is as likely as TH/HT/T no matter how biased the coin may be. You simply flip the coin twice for each trial rejecting both TH and TT then designate HT as one and TH as zero, or vice versa.

2. PENTAGON SPY. Imagine that the man has a doppelganger directly opposite him on the other side of the Pentagon's center and the same distance away. If either man sees three sides, his double must see only two. Since the man may be at either of two points with equal likelihood, the probability that he will see three sides is 1/2.

3. VIGNETTE. One is tempted to say 1/2, but this is wrong. Had the statistician said that his older child is a boy, then the probability that the other is a boy is 1/2. But having said that one is a boy there are three equally likely possibilities: boy-boy, boy-girl, and girl-boy. In only the first case are both children boys. Hence the probability in this question is 1/3.

4. PARIADOX. The fact that you hold a pair actually increases the probability that your opponent also holds a pair. Your pair reduces the number of cards remaining in the deck, which increases your opponent's chances of drawing two matching cards. If you hold four of a kind, the probability of any opponent's holding a pair is about 10 percent higher than if you hold nothing.

5. BETCHA HALF. Since I won as many times as I lost, the total of bets was an even number. On the average, out of each pair of bets I lost one and won the long run. Each pair of bets reduces my bankroll by 1/4. The payoff is remarkably similar to that of some recent stock-market investments.

6. TWO STRAIGHT. If Junior is to win two games in a row he must win the second game so it is to his advantage to play that game against the weaker opponent. He must also win at least once against the stronger opponent, his father, and his chances of doing so are greatest if he plays his father twice. The first game should be against his father.

7. HAT TRICK. Junior's best strategy is to put a $10 bill in one hat (A) and the other $10 bill in the other hat (B). The odds of drawing a $10 bill from hat A are $10 \times 1 = 1/2$. The odds of drawing a $10 bill from hat B are $1/2 \times 1/2 = 1/4$. The sum of the two probabilities is 14/19. There is an almost 3/4 chance of Junior picking a $10 bill and getting his allowance bonus.

8. LICENSE TAG. If you took this bet you didn't learn much from the birthday paradox. The same sort of calculation is involved. Actually the odds are 7 to 1 that of 20 license plates at least two will have the identical last two digits.

9. STRING THING. Follow the lace down from the upper left and through the first three intersections. Use capital letters to designate passing over (ABC), small letters for passing under (abc). There are eight possible ways the lace can cross itself and of these only two (AbC and aBc) create knots. The probability of getting a knot is one in four.

10. KIDS. Most people guess (1) two boys, (2) two girls, but the correct answer is (2) three of one sex, one of the other. Of the 16 possible combinations of four children eight of them is a three: one split. In only six is there a two-two split.

11. BIDS. Open the first bid and use it as a standard. Accept the first upcoming bid that is less, or the last bid if none is less. Four bids ranked 1, 2, 3, 4 may be opened in 24 possible permutations, and the above strategy results in picking 1 the highest bid, 1/2 of the time. If a large number (N) of bids is involved, the best strategy is to compute N/e (e is the transcendental number 2.718) and then accepting the integer number of bids and accept the next one that is lower than any of those bids.

12. CARD MATCH. The probability that at least one card will be dealt as it is named is greater than one might suppose almost 2/3 in fact. Since most people assume the chances are about 50-50, this qualifies as an excellent sucker bet.

13. SIC TRANSIT. This dice game is nontransitive. Die A beats B (probability 2/3) and die B beats C (probability 2/3) but die C beats A (probability 5/9). The best Jimmy the Greek can do is minimize his losses by choosing A.

14. INAUGURAL BALL. The probability is zero. If nine hats are correct, the tenth must be correct as well.
POLITICS

CONTINUED FROM PAGE 54.

had foolishly restrained his program Hirsch scoffed at the administration's plan to put a demonstration plant into operation by 2015 or 2020. In a harmonious duet with McCormack he took a hearing in December 1979 that there was no reason to hold back and every reason to get on with it.

The program has reached, and in many cases surpassed, the goals publicly set forth in past years. Hirsch declared "Magnetic fusion research has consistently been on schedule and very close to the cost estimates, even during recent inflationary times. He stressed, however, that fears that yet another high tech project might produce catastrophic budget overruns and unmet deadlines.

Hirsch emphatically asserted that his "panel felt the magnetic fusion energy program was without a doubt ready to proceed much more aggressively than projected. He called for a $1 billion-class experimental fusion-power system. "It was the panel's view Hirsch continued that this step should be formally initiated in the near term because a delay would substantially reduce the effectiveness of the ongoing program.

An engineering test facility, he said, should be in operation by 1987, with a demonstration plant on line before the year 2000.

The next witness was another true believer: Edwin Kintner. Hirsch is successor as DOE's associate director for fusion energy. Now McCormack went into rhetorical orbit about the virtues of fusion. "The development of fusion power will be clearly one of the most important events in history of mankind," he said.

Then he asked Kintner: "Do you see any reason why we should not compress the schedule? Do you see any reason why we must take our steps sequentially? Is it not realistic to try to take them somewhat in parallel and therefore not wait until we have every detail from one project before we start the next?"

Kintner picked up the melody: "That's a very unfair question you're asking. You know without asking that I think you know my position—we want very much to proceed, absolutely. We believe we are dealing with the future of the human race."

"I apologize for asking an unfair question. McCormack replied. I should ask it of the President, the secretary of Energy, and the director of OMB. I won't put you under the gun."

"Thank you," Kintner said.

McCormack's next step was a direct challenge to Jimmy Carter. In a letter he urged the President to declare the development of magnetic fusion energy as a major national priority. McCormack requested a fusion budget of $300 million for the fiscal year starting on October 1, 1980—roughly $150 million more than the administration had planned. Researchers, he added, should be authorized to get moving at once on the next big step: the engineering test facility.

McCormack kept hammering at the idea that fusion rapidly make the transition from physics to engineering and that Carter then realigning under accusations of failed leadership must take charge and not be bound by feathered penspinning advisors. Quoting from the Bible: "Where there is no vision, the people perish." McCormack advised Carter that the Hirsch panel included the finest scientists, engineers, and industrial managers in the world and asked, "May I hear from you soon?"

Carter swiftly passed this hot potato over to DOE which appointed yet another panel. This one was headed by S. J. Buchsbaum, a president of Bell Laboratories and a veteran of the advisory process of all the recent fusion panels. Buchsbaum group was widely regarded as scientifically the most sophisticated.

The panel listened to fusion specialists, visited the major research centers and emerged with a verdict about midway between the earlier ones. Buchsbaum, though optimistic, concluded that it was still a bit too early to start on an engineering test facility. Nevertheless, the report emphasized: "The panel is firmly of the view that the development of the requisite engineering experience requires a broad program of engineering experimentation and analysis having all its focus a test device with a burning, even an ignited plasma."

To the politicians the answer was clear: Fusion is looking good. So let's get on with it.

By August 1980, when the Buchsbaum report was circulating around the capital, McCormack had acquired some 200 cosponsors for the bill he wanted. It authorized construction of the engineering test facility by 1987 and an operating demonstration plant "before the end of the century—just as the Hirsch panel had recommended. Why were they signing up when the coming election put a premium on pledges to cut federal spending?"

McCormack explains that "fusion has an image that's the best of both worlds. It offers cheap and plentiful energy and it's clean and utopian."

Fusion is one of those rare items in national politics that has managed to elude violent opposition. Amory Lovins apostles of "soft energy" solutions says that "fusion is a clever way to do something that we can't really want to do. It finds another capital-intensive, complex, centralized source of large blocks of baseload electricity."

But neither he nor any other influential member of the public-interest movement found it worth a serious confrontation. The reason, McCormack says, is simply that fusion is still far off to arouse public attention.

Routed as the ultimate solution to energy problems, fusion has also begun to give off the aroma of goodies to be shared. High-tech industry always on the lookout for new government contracts and industrial markets early last year formed Fusion Power Associates to lobby for a faster development program. With 16 big firms in the charter group the association set up a Washington area office and strongly backed McCormack's plan.

Meanwhile fusion is gathering a constituency. Senator Howard Baker of Tennessee for one has suddenly emerged as a strong fusion supporter. He openly acknowledges that his interest is tightly linked to DOE's big fusion project at the Oak Ridge National Laboratory in his home state. Senator Paul Tsongas of Massachusetts picked up the Buchsbaum theme urging a faster research program but not quite what Hirsch and McCormack had recommended.

The final bill calls for a fusion budget of $1 billion by 1987 up from the $400 million originally planned for 1981. By 1980 a Center for Fusion Engineering is to be in operation with a working demonstration plant by the year 2000. The vote in the House was 365 to 7. The Senate then passed the bill by voice vote.

Passage is a declaration that the United States intends to hurry its fusion program along but the money to pay for it must come through separate legislation. Other projects have bogged down when the funding was not passed, but there is not much chance of this happening when the votes are so overwhelming. Nor will McCormack hold still the budget cutters' attempt to abort his achievement.

In fusion circles it is McCormack who is credited as the prime mover in all this. Ed Freeman, the Princeton fusion scientist who succeeded Deutch as chief of energy research at DOE, says that McCormack is the central figure.

As for the congressman from Yakima he shrugged the bill'a passage by saying only "I'm elated." Then he pointed out that Hanford is the ideal site for that $1 billion Center for Fusion Engineering.
THE MIND OF MAN
... The still unexplored region

From the gigantic pyramids of ancient Egypt to the soaring rockets of space—the mind of man has been the driving force behind all achievement. Every plan begins within the recesses of mind, with a subtle mysterious element—and idea. What is consciousness by which you are aware of self and your world? What causes the welling up of ideas, the surge of inspiration? What are the psychic faculties that cause a feeling of right and wrong—that tug and play upon your reason and emotions? Though the mind of man has pushed back the boundaries of the universe, revealing wonders—yet the greatest mystery of all is mind itself.

The Rosicrucians, a worldwide brotherhood (not a religion) have devoted themselves for centuries to the fascinating exploration of mind. They have shown how certain understanding of your powers of self can make the difference between full and joyful living and mediocrity.

Free Booklet
Write today for a free copy of the Mastery of Life. It will point out the facts about you—your dormant powers of mind. Address: Scribe AKV

The Rosicrucians
(AMORC)
San Jose, California 95191, U.S.A.

Scribe AKV
Rosicrucian Order, AMORC
San Jose, California 95191, U.S.A.

Please send me a free copy of the Mastery of Life.

Name ____________________________
Address __________________________

[Box for ZIP code]
An invitation to photograph the definitive Omni cover

PHOTO CONTEST

By Geoffrey Golson

The overwhelming response and superior quality of submissions to the Omni Phenomena Photo Contest (see page 78 for results) prompt us to announce the next in a series of photography invitations. Only three photographic images have found their way onto Omni's cover since the magazine's inception 27 issues ago. This reflects the difficulty we face in finding appropriate cover photography. Our unique editorial focus defies easy categorization. After all, how can the frontiers of space, the promise of technology or even the fantasy of visionary fiction combine to form one simple photograph? We can give you a clue: however, there is an undercurrent flowing through Omni—a view shared by writers, artists, editors, and readers. We are all optimistic futurists. In view of what our readers can accomplish when they put their minds and lenses to a subject, we thought it appropriate to plumb the depths of their creativity for help. The photographic covers we've published thus far:

1. Premier issue—October 1978: Road Song, by Pete Turner. It was shot at dusk along a deserted and eerie road.
2. February 1979: an untitled alien landscape created entirely in the studio by Turner.

We're looking for interpretive graphic imagery that personifies the Omni viewpoint: science and the imagination applied to a more brilliant future. Think of yourself as a photographer in the year 2081. What subject best captures the age in which you are living? Color quality should be of the highest caliber and it is important that the subject be concentrated in the bottom two-thirds of the photo to allow space for the Omni logo and cover copy.

For this contest we will be awarding special prizes:

The First Prize winner will receive a gold-embossed certificate from Omni; $500 in cash; and guarantee of publication.
The Second Prize winner will be presented a silver certificate. The Third Prize winner will receive a bronze certificate.

Here are the rules:
1. Photographs must be original, previously unpublished, and solely your property.
2. You may enter more than once, but each entry must be submitted separately.
3. The competition is open to everyone except employees of Omni Publications International, Ltd. and their families.
4. Color slides. Print your name and address on the slides' border as well as on an accompanying letter explaining the subject of the photo and how the photo was made.
5. Prints. Print your name and address on a small slip of paper. Tape it to the back of the print. Put your name and address on the accompanying letter. If possible, enclose the negative as well.
6. We cannot return any photos. So send us something you can part with. If you wish to keep the original, have a duplicate of your slide or print made. Send that.

If your photo is chosen for publication, we will contact you to obtain the original.

7. In order to allow extra time for you to shoot, process, and reproduce your pictures, the deadline for this contest is extended one month beyond the usual closing date for Omni competitions.
8. Finalists will be chosen by the Competitions Editor Scot Morris, Omni Art Director Frank DeVino, and Omni Editor Publisher and Design Director Bob Guccione.
9. Omni will have the right to reproduce all entries in Omni, its advertising promotion and displays, and in shows and exhibits without limitation. Omni will pay its standard fees for editorial use of any entries for purposes not connected with the photography contest.
10. Prize-winning contestants may not permit publication or display of prize-winning photographs without the prior written consent of Omni.
11. Entries must be postmarked no later than March 1, 1981 (or March 15 for entries mailed from outside the United States). Pack them carefully and send them to Omni Photo Contest, 509 Third Avenue, New York, NY 10022.
any evidence at all other than a book written by man were offered, I would certainly consider it.

Keith Field
Syracuse, N.Y.

I am writing in response to Mr. Bova's article on creationism [October 1980]. I was happy to see Omni deal with the subject, but as I read the piece my enthusiasm was dampened. Mr. Bova treated creationism the same way religionists treat evolution if evolution is the logical conclusion drawn from the evidence. Why not give the creationists equal time? Surely the truth of the conclusion would be apparent. Why can't we lay aside our personal doctrines and open an honest debate? Are we more concerned with defending our assumptions than with seeking the truth?

Bill Hathaway
Upland Ind.

Ben Bova replies: In any argument over ideas, it is prudent to seek out the evidence that can be examined, weighed and tested. Since before Darwin's time the evidence of evolution has been found in fossils in living organisms, and in the development of all life on Earth, Creationists in their attempt to use religious mythology as a substitute for evidence, do a disservice to both religion and science. Genesis is a powerful and moving moral tale. But it is not biology and was never intended by its authors to be used as a biology text. 'Return unto Caesar' is an apt principle for the debate between Creationism and Evolution.

Sexist?

I realize that Omni is a science magazine, but your fiction stories are ridiculous. The sexist viewpoints that repeatedly come across in these stories are so outdated. The awkward inclusion of 'Horny thought efficient breasts: Sparsa, hard little knockers' ['Easy Points, October 1980] is so contrived and out of tune with the story line as to be laughable.

I realize that SF writers tend to lead somewhat socially and sexually isolated lives (at least: this stereotypical line of reasoning seems to be justified by the sample of short stories I find in Omni), but please: this is 1980, not 1950. Some of us have progressed beyond such blatant attempts at sexual titillation during the last 30 years.

Do you want crossover readership from Heavy Metal Magazine or do you want to be a respected science magazine?

Jeanette Lee Wynne
Richmond, Va.

Language need not be as simple or straightforward as careless readers make it out to be. The fact that a line in a story may reflect a sexist attitude does not mean that the author or editor of the line is sexist or simple. Both the author and the editor of 'Easy Points' were women. A good writer chooses words not because they are infers vulgar or because they are in vogue but because they will have the desired effect. The line in question was used for characterization, in fact for a kind of double characterization of both Henry and Dana.

If you leave behind both your 1950 and your 1960 notions of sex and politics and consider that a writer can write about something other than her own beliefs you might enjoy the fiction more — Ed.

Perfectly Clear

I don't know what the article 'Torrents of Babel' [October 1980] means. Based on integral subsystems considerations any associated supporting element presents extremely interesting challenges to the philosophy of commonality and standardization. In particular a large portion of the interface coordination communication must utilize and be functionally interwoven with sophisticated speech anomalies. Conversely a constant flow of effective information maximizes the probability of communication success and minimizes lingual compatiblity subsystem testing. Similarly initiation of critical subsystem development necessitates that urgent consideration be applied to the structural framework of a given linguistic feedback apparatus. Have I been perfectly clear?

Al Cocco
New York, N.Y.

Games People Play

Question 3 of the Which Lasts Longer Quiz [Games, September 1980] compares the longevity of human blood and sperm (in preservation outside of the body). The answer states that blood is stored only three weeks under refrigeration and sperm lasts for years. Human blood can be preserved in CPDA-1 for about 35 days or frozen in glycerol for as long as three years. Perhaps a better comparison would be between sperm and blood in the same state.

Pam Marmillion
MT (ASCP)
Sfidell, La.

And the Winner Is...

At last long we can announce the winner of our Ultra-Short Story Contest, sponsored by the European edition of Omni. The response was overwhelming. More than 750 stories were received by the closing date, July 31. The judges of the competition were Dr. Bernard Dixon, Omni's European editor science fiction writer, Christopher Priest, Patrick McMeekin OBE, and Andre Buriain, Omni's European editorial assistant.

Ruan John McCaul of Baldock, Hertfordshire, England, is the winner of £500 for his story, 'The Smith and the Stranger.' The nine runners-up were K.J. Barnes, James Byrne, Rob Carter (two entries), David Cledden, Les Isbister, A. Kerst Angus McAllister, Charlotte McDonough, and Julie Naughton. Each will receive a one-year subscription to Omni. — Ed.

Free!

Edmund Scientific Catalog

FREE! Edmund Scientific Catalog

Send check, money order, or use American Express, Visa or Master Charge, including all numbers and signatures.

For a color catalog, left of old Tennessee items and Jack Daniel's memorabilia send $1.00 to above address.

Lynchburg
Hardware General Store
62 Main St., Lynchburg, TN 37352

JACK DANIEL SQUARE GLASS SET

Mr. Jack Daniel was the originator of the square bottle for his whiskey and always wanted to have a matching square glass. Well, here it is! This hefty square glass (etch weighs 14 ounces) is the perfect companion to a bottle of Mr. Jack's finest. The inside is rounded to make drinking a pleasure and the original design is fired on for good looks and durability. My $15.00 price for a set of 4 glasses (6 oz. capacity) includes postage.

Free! Edmund Scientific Catalog

Send check, money order, or use American Express, Visa or Master Charge, including all numbers and signatures.

For a color catalog, left of old Tennessee items and Jack Daniel's memorabilia send $1.00 to above address.
Red Martian mountains, a patch of blue more, streaks streaking the night—components not of outer space but of inner space. A 4,000-year-old Persian bronze fragment, viewed through Space Age optical technology, gives scientists clues to the structure of primitive tools during the Bronze Age. This polished specimen was magnified 100 times by Nicholas Hartmann, of the Applied Science Center of Archeology at the University of Pennsylvania Museum. A thermosetting resin (red portion of the photo) fuses the granular bronze (black portion) to a mounting medium. The artifact is then etched with acid and inspected for micro-structures relating to the original use of the ore. Occasionally a common feature, such as corrosion (blue portion), can add an eerie beauty to the picture. For this photograph, Hartmann fitted a Photax MX camera to a Nikon Optiphot microscope set for dark-field illumination. The enlarged image was explored on Kodachrome 64 film exposed for one second. CO3
Take a chance on these —
a probability paradox potpourri

GAMES

By Scot Morns

Interviewer: If you had it all to do over, would you change anything?

Winston Churchill: Yes, I wish I had played the black instead of the red at Cannes and Monte Carlo.

Imagine if you will a party for the Omni editorial section of our masthead are there, 24 in all (not counting the contributing editors, who are out of town on assignment.) If you learned that among those 24 people in the room 2 had the same birthday (month and day) would you be surprised? How unusual do you think such a coincidence is? How many other such 24-person parties would you have to go to, on average, before you found another birthday match up?

Amazingly, the chances are better than 50-50 there will be such a coincidence.

How can this be? Note that we tend intuitively to analyze this problem by asking how likely we are to find someone with the same birthday as our own. But this is an entirely different question. The chance that any two persons, chosen at random, have the same birthday is 1 in 365. (This ignores February 29 and the fact that birth probabilities are not evenly distributed throughout the year. Ignoring leap day lowers the probability of a coincidence—the uneven distribution raises it.) But the chance of a coincidence among 24 persons is much higher because there are $1 + 2 + 3 + \cdots + 22 + 23 - 276$ possible matching pairs.

The graph shows how the probability curve rises with an increasing number of persons. From 0 (coincidence impossible) to 1 (coincidence absolutely certain). The graph crosses the .5 mark when there are 23 persons at that point the chance of matching birthdays is slightly above 1/2. Note that our graph stops once there are 60 persons because the probability grows so close to certainty that it becomes impossible to distinguish the curve from the line at the top of the graph. For 100 people the odds on a coincidence are about 3,000,000 to 1. Absolute certainty is not reached, of course, until there are 366 people in the room.

This month we present a potpourri of probability paradoxes. With each try your intuition first, your logic second. You may be surprised at the difference. Some questions may at first seem unanswerable in probability terms, approach them from a different angle and an Ah-Ha! experience awaits you. Educated guessing is encouraged—exhaustive computations are for mathematical masochists.

1. THE LOPSIDED COIN You have a coin that you have reason to suspect is unfair—that is, it is biased toward heads or tails. And a long series of flips won't come out 50-50. You want to generate a series of random binary digits—one's and zeros. Can you do it with this coin? How?

2. PENTAGON SPY A man is standing at a random spot several kilometers from the Pentagon. He looks at the building through binoculars. What is the probabilify that he will see three of its sides?

3. VIGNETTE Census Taker How many children do you have?

Statistician: Two.

Census Taker: And their sexes?

Statistician: At least one of them is a boy.

What is the probability that the other child also is a boy?

4. PARADOX If you play poker, you probably have a rough idea of the likelihood that your opponent holding hands of various value. Suppose you hold a pair; is the probability that your opponent also holds a pair greater, less, or the same as it would be if you held nothing?

5. BETCHA HALF I bet half the money in my pocket on the flip of a coin. Heads you pay me, tails I pay you. We toss the coin, hand over the money, and play again. Each time the bet is for half the money in my possession. After a number of rounds I tally my score and find that the number of times I lost was equal to the number of times I won. Did I win lose or break even, and by how much?

6. TWO STRAIGHT Leo Moser of the University of Alberta in Edmonton contributed this probability puzzle to Martin Gardner's Scientific American column "Mathematical Games." Junior asks Dad whether he can have the car for a Saturday night date. His father agrees, with one condition. Today is Wednesday. You will play a game of chess tonight, another tomorrow, and a third on Friday. Your mother and I will alternate as opponents. If you win two games in a row you may take the car on Saturday. In the past Junior has won and lost games against both parents, but knows that his father is the better player of the two. Which parent should he play first to maximize his chances of winning two games in succession? Should he play father-mother-father, or mother-father mother?

7. HAT TRICK After the chess challenge in the above puzzle Dad felt guilty about holding out on the car so he offered Junior a bonus on his allowance. Dad was a crafty mathematician, however, and his offer had a twist. He had ten $10 bills, ten $1 bills, and two hats. Junior was to put the 20 bills into the two hats any way he wanted. He would then be blindfolded and randomly draw one of the two hats and randomly draw a bill out of it. "If it's a ten, you can keep it," Dad said. "but if it's a one"—and here his guilt was overcome by his craftsmanship—"If it's a one, you'll wash the car two Saturdays in a row with no complaints." What strategy maximizes Junior's chances of drawing a $10 bill?
8. LICENSE TAG While you are standing at a bus stop, a gambler offers to wager you that of the license plate numbers on the next 20 cars to pass you, the last two digits on at least two of the plates will be identical. The gambler, apparently somewhat inebriated, offers to pay $2 to your $1. Should you take the bet?

9. STRING THING One morning as the probability theorist awoke he saw a shoelace on the floor in the pattern shown below, but his eyes were too bleary to see how the lace crossed itself at points A, B, and C. What is the probability that if he picked the lace up by its tips, he would find it tied into a knot?

10. KIDS If a couple plans to have four children, which is more likely: (1) two boys and two girls or (2) three of one sex and one of the other?

11. BIDS In the strange land of Ultima reversion is given to the last of everything. The Ultimas’ law says, for example, that a contractor who has a sequence of sealed bids before him must accept, not the lowest bid, but the last bid he opens. He is not required to open all the envelopes. Assume that there are four bids, all different, and that the contractor would like to accept the lowest of them. What would be his best strategy?

12. CARD MATCH Shuffle a deck of cards and deal them faceup one at a time while you recite aloud the names of all cards in a predetermined order, for example ace through king of clubs, followed by the same sequence for diamonds, hearts and spades. If you had the opportunity to bet even money that in one run through the deck at least one card will be turned up precisely as it is being named, would you take it?

13. SIC TRANSIT Odds are often computed by considering past performance and assuming the obvious transitive relationship that if A beats B and B beats C, then A beats C. If the Pittsburgh Steelers beat the Washington Redskins last week, and if the Redskins beat the San Diego Chargers this week, then, knowing nothing more, the odds makers would tell you that the Steelers should beat the Chargers next week. Here is a gambling game we offer to play with Jimmy the Greek. We use three fair dice each with an unusual number of spots on its six faces:

Die A has these faces: 1, 1, 4, 4, 4, 4
Die B has these faces: 3, 3, 3, 3, 3, 3
Die C has these faces: 2, 2, 2, 5, 5

Jimmy the Greek picks one die. I pick another and we roll for $1,000 bills. The higher number wins. I let Jimmy pick first, fair enough? Which die should he pick?

14. INAUGURAL BALL Ten senators, all wearing top hats, as they were walking to the President’s inauguration, were hit by a barrage of snowballs from a heckling crowd. All their hats were knocked off. A helpful young page retrieved them and without asking which had belonged to whom gave each senator a hat. What is the probability that exactly nine senators received their own hats?

Answers page 108

OLD BUSINESS

Our plea for prizeworthy achievements in the article Prizes and Competition #10 (December 1979) brought several unique suggestions that we summarized in the June 1980 issue. Daniel P. Shin of the University of Cincinnati, imagining a square containing randomly placed points and asked: "What is the probability that any randomly chosen point is the nearest point to the nearest neighbor?" He offered a $100 prize for the solution, and he got a $25 runner-up prize from us for doing it. The problem has been solved, and the $100 prize has been awarded to Charles Kluepfel of New York City. The solution is

$$\frac{6\pi}{8\pi + 3\sqrt{3}} = 0.621505$$

Shine received 26 solutions in a few weeks after the June issue came out, and several of them had the correct answer. Kluepfel was first received Congratulations.

Another runner-up prize went to Glenn Jenkins, of Kent, Washington, who asked for a self-contained and self-sustaining environment of living things, plant and animal that would last long enough to prove that a life cycle had developed. We learned later that this goal has already been reached. Roger James Maluk, a teacher at Central Regional High School in Greenfield Park, Quebec, wrote to say that his school has four such ecosystems that are air- and water-tight and totally self-supporting. The oldest is eight years old. They contain abundant plant life and a variety of insect species. Maluk writes: "Sunlight is the only form of direct energy input and the plants and animals reproduce themselves and have balanced themselves in terms of population size and food supply. We have decided to let Jenkins keep his $25 prize.

A suggestion that got an honorable mention for Chariot Lineweaver, of Providence, Rhode Island, was: "For a solar-powered ball that will not roll down a hill of 20 degrees or more incline as long as the sun is shining," Tinamer Toth-Fegel of Santa Clara, California, now claims to have cracked this pressing problem. He sent pictures of a silvery ball apparently made out of two soliders resting on an inclined plane. Nice going, Tinamer.

THE FIVE HOUSES Many readers wrote to say that they had found another valid solution to this puzzle, which appeared in the October issue. When we crosschecked, we found at least 11 legitimate solutions and a few illegitimate ones. For a summary of the response to this problem write to Five Houses, Omni 909 Third Avenue, New York, NY 10022, and enclose a stamped, self-addressed envelope.
Last Word

By James Randi

The delusion of perpetual motion is long and complicated. Yet such notions are suddenly brought to Earth by calculation and experiment.

Of all the citizens of Big Sandy, Texas (population 1,022) none is more famous than William C. Lucas, who was featured not long ago on NBC TV News as the inventor of perpetual motion. Reporter Bob Dosten said, "They laughed at Edison but they're not laughing at Bill Lucas!"

And onto America's TV screens spun the contraption that, according to NBC, generates 4,000 watts of electricity. "Hastening to witness this wonder I visited Lucas's home in a high state of doubt but quite willing to be convinced.

Lucas had been switching some gears and his machine was not quite in working order. It rotated and made appropriate grinding and hissing noises. But it would not continue to run without being powered from the domestic 110 volts that were used to start it up.

Here's what I saw: A half-horsepower electric motor was run by house current via an underground cable. It turned the shaft of a gravity wheel of Lucas's own design. This wheel, operating vertically, had three spokes that slid along the spoke. The weights were pushed to the other end of the spoke, or drawn back to the hub by means of pneumatic cylinders triggered by a cam on the wheel axle as it contacted the respective valves. When a spoke reached a straight-down position, the weight was drawn up to the hub and a moment later the weight, now beginning its downward trip, was shot out to the end of its spoke. Thus, the wheel rotated under both the weight of the motor and the action of the weights providing torque. But where did the compressed air come from that moved the weights? Well, the gravity wheel was connected to an old Toyota transmission which turned a 500-pound flywheel which ran a 4,000-watt generator which put 220 volts into a transformer which split it into two 110-volt circuits, one of which ran the air compressor. See?

And the other 110-volt line? It ran from the half-horsepower motor once the arrangement was in motion, Lucas claimed that the disconnected house current was used to start the action and the small motor then ran on the voltage that came from the generator run by the flywheel, etc.

That's what Lucas claimed. When I was there, the gearing was not quite right, he said. But there had been an engineer present with the NBC team, he told me, who had stopped him on the back and cautioned him not to give his invention away for free. That's all. No validation no questions no doubt at all from the engineer I decided that lacked definition and needed looking into.

I contacted NBC. No outside engineer had been called in. I was told Lucas had simply disconnected the long wire that ran into the house to prove that the machine ran by itself. That's all they had required of him to prove his claim. But I recalled that Lucas had obtained the house current from a borrowed line. Things were looking very grim for the future of perpetual motion at that point! However, NBC also told me that one of its staff present at the demonstration was an engineer from a Tyler, Texas, TV station. I immediately got on the phone to Tyler.

The engineer was now in Columbus, Missouri. Undaunted, I called him there. He turned out to be a sports announcer who was of the opinion that Lucas's machine worked as claimed. After all, he explained, NBC had powered its TV lights from it. What else do you need?

Lucas, I discovered, has a patent pending on the "gravity wheel," which he claims is a Newtonian proposition, that anyone could run his machine. "No way that thing's going to work!" the engineer exclaimed as they drove back from the show. "Tate decided that he'd better ask for a demonstration with everything uncovered all lines showing, and the provision made for simply pulling the main power switch inside the house to see whether the contraption would keep on going.

Looking at the Lucas "invention" we discover that he has reinvented the flywheel, the unbalanced wheel, and the compressed air. Surely he loses the majority of the power that he gets into it, through transference and through friction. It it's 50 percent efficient, I'll be surprised. And—of greater interest—I find that an examination of his patent-pending papers shows that no provision is made for disconnecting the initial 110 volt motive power! Shouting weights out to the end of spokes to cause a wheel to turn provides no advantage at all! Yet a patent attorney in Washington, D.C., accepted Lucas's money to have these papers filed.

The history of the perpetual-motion delusion is long and complicated. Machines similar to the Lucas assemblage have been begging for patents ever since the Patent Office opened for business. Every amateur has figured that running a generator from a motor run by that same generator would be a grand idea. Yet such notions are deflated suddenly by both calculation and experiment. But that doesn't stop the inventors—or the investors. Just after NBC-TV News ran the Lucas story, the FBI arrested a Texas citizen named Arnold Burke for selling $800,000 worth of stock in a similar type of wheel he had named "Jeremiah 33:5," for reasons that I will allow my reader to discover. Burke was found to be using a small motor to keep the device going. He claimed to get 3,000 kilowatt hours per month from his wheel—and may get a few years in jail, too.